Network Dependencies in Social Space, Geographical Space, and Temporal Space. Part I¹

Johan Koskinen

Social Networks Lab Melbourne School of Psychological Sciences University of Melbourne

NetGlow June 2022

1 More material at http://www.stats.ox.ac.uk/siena/; Material from Snijders greatly_acknowledged 📃 🕨 🚊 🔊 🔍 🖓

johan koskinen at unimelb.edu.au SAOM for network dynamics

The two basic types of data

NETWORK nodes: Andras, Per, Zsofia have **ties:** Andras \rightarrow Per

BEHAVIOUR **attributes** of nodes: Andras, Per, Zsofia drink Zsofia does not smoke

・ロト ・ 理 ト ・ ヨ ト ・

ъ

The two basic types of data

NETWORK

nodes: Andras, Per, Zsofia have **ties:** Andras \rightarrow Per

BEHAVIOUR

attributes of nodes: Andras,

Per, Zsofia drink

Zsofia does not smoke

ヘロト 人間 ト ヘヨト ヘヨト

э

We have observations on NETWORK and BEHAVIOUR

At some fixed points in time

starting at t_0 followed by t_1 $t_0 < t_1$

inferential task: **EXPIAIN** how to change into to

johan koskinen at unimelb.edu.au

SAOM for network dynamics

We have observations on NETWORK and BEHAVIOUR

inferential task: explain how t_0 change into t_1

johan koskinen at unimelb.edu.au

SAOM for network dynamics

・ロット (雪) (山) (山)

We have observations on NETWORK and BEHAVIOUR

inferential task: **EXPlain** how t_0 change into t_1

< 🗇 > < 🖻

We have observations on NETWORK and BEHAVIOUR

inferential task: **EXPlain** how t_0 change into t_1

johan koskinen at unimelb.edu.au

SAOM for network dynamics

< 🗇 > < 🖻

We have observations on NETWORK and BEHAVIOUR

Especially the **co-evolution**:

ヘロン ヘアン ヘビン ヘビン

inferential task: explain how t_0 change into t_1

We have observations on NETWORK and BEHAVIOUR

inferential task: **EXPlain** how t_0 change into t_1

johan koskinen at unimelb.edu.au

SAOM for network dynamics

< 🗇 > < 🖻

The SAO Model

We have **observations** on NETWORK and BEHAVIOUR

inferential task: **EXPlain** how t_0 change into t_1

johan koskinen at unimelb.edu.au

SAOM for network dynamics

The SAO Model

Assume PARTIAL observations on a process

the process **EXPLAINS** how to change into t

johan koskinen at unimelb.edu.au

SAOM for network dynamics

The SAO Model

Assume PARTIAL observations on a process

the process **EXPlainS** how t_0 change into t_1

johan koskinen at unimelb.edu.au

SAOM for network dynamics

ロトス値とスヨトスヨト

What type of data do we want to explain: adjacency matrix

Data represented as adjacency matrices

$$\mathbf{X} = \left(\begin{array}{ccccc} . & 0 & 0 & 0 & 1 \\ 1 & . & 0 & 0 & 0 \\ 1 & 1 & . & 0 & 0 \\ 0 & 0 & 0 & . & 0 \\ 0 & 0 & 1 & 1 & . \end{array} \right)$$

where $x_{ij} = 1$ or 0 according to wether $i \rightarrow j$ or not.

What type of data do we want to explain: longitudinal

Data represented as adjacency matrices where elements change

$$x(t_0) = \begin{pmatrix} \cdot & 0 & 0 & 0 & 1 \\ 1 & \cdot & 0 & 0 & 0 \\ 1 & 1 & \cdot & 0 & 0 \\ 0 & 0 & 0 & \cdot & 0 \\ 0 & 0 & 1 & 1 & \cdot \end{pmatrix}$$

What type of data do we want to explain

Data represented as adjacency matrices where elements change

$$x(t_1) = \begin{pmatrix} \cdot & 1 & 0 & 0 & 1 \\ 1 & \cdot & 0 & 0 & 0 \\ 1 & 0 & \cdot & 0 & 0 \\ 0 & 0 & 0 & \cdot & 0 \\ 1 & 0 & 1 & 1 & \cdot \end{pmatrix}$$

What type of data do we want to explain

Data represented as adjacency matrices where elements change

$$x(t_2) = \begin{pmatrix} \cdot & 1 & 0 & 1 & 1 \\ 1 & \cdot & 0 & 0 & 1 \\ 1 & 1 & \cdot & 0 & 0 \\ 0 & 0 & 0 & \cdot & 0 \\ 1 & 0 & 0 & 1 & \cdot \end{pmatrix}$$

SAOM: the rate of change

At random points in time, at rates λ_i

nodes/individuals/actors are given opportunities to change

< 🗇 🕨

→ Ξ → < Ξ →</p>

SAOM: the direction of change

Conditional on an actor having an opportunity for change the probability for each outcome

SAOM: the direction of change

Conditional on an actor having an opportunity for change the probability for each outcome

is modelled like multinomial logistic regression

(日) (雪) (モ) (モ) (モ)

SAOM: the direction of change

Conditional on an actor having an opportunity for change the probability for each outcome

- ◎ is modelled like multinomial logistic regression
- o reflects the attractiveness of the outcome to the actor

Example: *i* has oppotunity to change/toggle x_{ij} to $1 - x_{ij}$. We call the new network $X(i \rightsquigarrow j)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Intro	Model	Estimation	Behaviour	Example
00000000000	000000000000000000000000000000000000000	000000	00000000000	000000

$$x = \begin{array}{r} -010\\ 0-10\\ 10-1\\ 000- \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

johan koskinen at unimelb.edu.au SAOM for network dynamics

★ロト★個と★注と★注と、注

johan koskinen at unimelb.edu.au SAOM for network dynamics

★ロト★個と★注と★注と、注

Of the three changes (for j = 2, 3, 4) available to *i* (here 1)

johan koskinen at unimelb.edu.au SAOM for network dynamics

(ロ) (同) (目) (日) (日) (の)

Of the three changes (for j = 2, 3, 4) available to *i* (here 1) the probability that *i* toggles the tie $i \rightarrow j$ is given by

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Of the three changes (for j = 2, 3, 4) available to *i* (here 1) the probability that *i* toggles the tie $i \rightarrow j$ is given by

One-step jump probability

$$p_{ij}(\beta, G) = \frac{\exp\left(f_i(\beta, G(i \rightsquigarrow j))\right)}{\sum_{h=1}^{n} \exp\left(f_i(\beta, G(i \rightsquigarrow h))\right)},$$

where

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Of the three changes (for j = 2, 3, 4) available to *i* (here 1) the probability that *i* toggles the tie $i \rightarrow j$ is given by

One-step jump probability

$$p_{ij}(\beta, \mathbf{G}) = \frac{\exp\left(f_i(\beta, \mathbf{G}(i \rightsquigarrow \mathbf{j}))\right)}{\sum_{h=1}^{n} \exp\left(f_i(\beta, \mathbf{G}(i \rightsquigarrow h))\right)},$$

where

- G(i → j) is the network resulting from the change
- β are statistical parameters
- f_i describes the attractiveness of $G(i \rightsquigarrow j)$ to i

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

johan koskinen at unimelb.edu.au SAOM for network dynamics

イロト 不得 とくほ とくほとう

ъ

van de Bunt data set

```
library('RSiena')
library('network')
library('sna')
tmp4[is.na(tmp4)] <- 0 # remove missing
par(mfrow = c(1,2))
coordin <- plot(as.network(tmp3))
plot(as.network(tmp4),coord=coordin)</pre>
```

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()
Intro	Model	Estimation	Behaviour	Example
00000000000	000000000000000000000000000000000000000	000000	00000000000	000000

Let us assume that *i* ONLY cares about not having too many or two few ties:

$$f_i(eta, X) = \exp\left\{eta \sum_j x_{ij}
ight\}$$

meaning that

$$p_{ij}(\beta, X) = \frac{\exp\left\{\beta(1-2x_{ij})\right\}}{\sum_{h=1}^{n} \exp\left\{\beta(1-2x_{ih})\right\}},$$

because if currently $x_{ij} = 1$, then the number of ties for *i* in $G(i \rightsquigarrow j)$ will be one less (-1), and if currently $x_{ij} = 0$ then there will be one more (+1)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Simulation settings: actors only care about degree

Let the rate be equal for all $\lambda_i = \lambda = 3.8311$

- is each iteration, actor with shortest waiting time 'wins' (and gets to change)
- \checkmark on average every actor gets 3.8 opportunities to change

and set $\beta = -1.1059$

- ✓ if $\beta = 0$ actor would not care if tie was added or deleted
- ✓ here β < 0 meaning that actor wants less than half of the possible ties

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

van de Bunt data set

mynet1 <- sienaDependent(array(c(tmp3, tmp4),</pre> dim=c(32, 32,2))) mydata <- sienaDataCreate(mynet1)</pre> myeff <- getEffects(mydata)</pre> myeff <- includeEffects(myeff, recip,include=FALSE)</pre> myeff\$initialValue[myeff\$shortName == 'Rate'] <- 3.8311</pre> myeff\$initialValue[myeff\$shortName=='density'][1] <- -1.1059</pre>

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Model: rate

Histogram of waiting

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

$$\frac{\Pr(1 \rightsquigarrow 2)}{e^{-1.1059}} = \frac{e^{-1.1059}}{e^{-1.1059} + e^{-1.1059} + e^{-1.1059} + 1} = 0.07$$

イロト 不得 とくほ とくほとう

ъ

$$\Pr(1 \rightsquigarrow 2) = \frac{e^{-1.1059}}{e^{-1.1059} + e^{1.1059} + e^{-1.1059} + 1} = 0.07$$

$$\Pr(1 \rightsquigarrow 3) = \frac{e^{1.1059}}{e^{-1.1059} + e^{1.1059} + e^{-1.1059} + 1} = 0.65$$

ヘロア 人間 アメヨア 人口 ア

ъ

johan koskinen at unimelb.edu.au SAOM for network dynamics

$$\Pr(1 \rightsquigarrow 2) = \frac{e^{-1.1059}}{e^{-1.1059} + e^{1.1059} + e^{-1.1059} + 1} = 0.07$$

$$\Pr(1 \rightsquigarrow 3) = \frac{e^{1.1059}}{e^{-1.1059} + e^{1.1059} + e^{-1.1059} + 1} = 0.65$$

$$\Pr(1 \rightsquigarrow 4) = \frac{e^{-1.1059}}{e^{-1.1059} + e^{1.1059} + e^{-1.1059} + 1} = 0.07$$

イロン 不良 とくほう 不良 とうほ

$$Pr(1 \rightarrow 2) = \frac{e^{-1.1059}}{e^{-1.1059} + e^{-1.1059} + e^{-1.1059} + 1} = 0.07$$

$$Pr(1 \rightarrow 3) = \frac{e^{1.1059}}{e^{-1.1059} + e^{-1.1059} + 1} = 0.65$$

$$Pr(1 \rightarrow 4) = \frac{e^{-1.1059}}{e^{-1.1059} + e^{1.1059} + e^{-1.1059} + 1} = 0.07$$

くロト (過) (目) (日)

Of course, in van de Bunt every actor has 31+1 choices for change

Now let us simulate

Simulate from t_0 to t_1 (simOnly = TRUE)

<pre>sim_mode</pre>	1 <-	<pre>sienaAlgorithmCreate(</pre>								
		<pre>projname = 'sim_model',</pre>								
		cond = FALSE,								
		useStdInits = FALSE, nsub = 0 ,								
		<pre>simOnly = TRUE)</pre>								
sim_ans	<- sien	na07(sim_model, data = mydata,								
		effects = myeff,								
		<pre>returnDeps = TRUE, batch=TRUE)</pre>								

The object sim_ans will now contain 1000 simulated networks

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Extract networks

The object mySimNets is a 1000 by *n* by *n* array of adjacency matrices

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Plot observed network and 9 simulated

pdf(file='simnets1.pdf', width = 9,height =4.5) par(mfrow=c(2,5), oma = c(0,4,0,0) + 0.1,mar = c(5,0,1,1) + 0.1)plot(as.network(tmp4),coord=coordin, main=paste('ties:',sum(tmp4))) apply(mySimNets[1:9,,],1,function(x) plot(as.network(x), coord=coordin. main=paste('ties: ',sum(x)))) dev.off()

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The observed at t_1 and possible netowrks at t_1

イロン 不得 とくほ とくほ とうほ

Model Example

Simulated networks v t_1 obs

johan koskinen at unimelb.edu.au

15 SAOM for network dynamics

106

375

Conclusions

A process where *i* ONLY cares about not having too many or two few ties does to replicate the reciprochity at t_1 Assume that *i* ALSO cares about

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Conclusions

A process where *i* ONLY cares about not having too many or two few ties does to replicate the reciprochity at t_1 Assume that *i* ALSO cares about having ties $i \rightarrow j$ reciprocated $j \rightarrow i$

$$f_i(\beta, X) = \exp\left\{\beta_d \sum_j x_{ij} + \beta_r \sum_j x_{ij} x_{ji}\right\}$$

meaning that probability that *i* toggles relationship to *j*

$$p_{ij}(\beta, X) = \frac{\exp \left\{\beta_d(1 - 2x_{ij}) + \beta_r(1 - 2x_{ij})x_{ji}\right\}}{\sum_{h=1}^n \exp \left\{\beta_d(1 - 2x_{ih}) + \beta_r(1 - 2x_{ih})x_{hi}\right\}},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Model

Objective function:

- $\beta_d \sum_j x_{ij} + \beta_r \sum_j x_{ij} x_{ji}$
 - adding 1 \rightarrow 2: β_d
 - deleting 1 \rightarrow 3: $\beta_d \beta_r$
 - adding 1 \rightarrow 4: β_d

Our simulated networks had too few reciprocated dyads so we need to set $\beta_r \dots$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Simulation settings: actors care abut degree and reciprocity

Let the rate be equal for all $\lambda_i = \lambda = 4.2525$

✓ on average every actor gets 4.3 opportunities to change

and set $\beta_d = -1.4163$

✓ here β_d < 0 - actors do not want too many ties

and set $\beta_r = 1.1383$

✓ here $\beta_r > 0$ - actors prefer reciprocated to assymptric ties

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

van de Bunt data set

myeff <- includeEffects(myeff, recip,include=TRUE)
myeff\$initialValue[
 myeff\$shortName == 'Rate'] <- 4.2525
myeff\$initialValue[
 myeff\$shortName =='density'][1] <- -1.4163
myeff\$initialValue[
 myeff\$shortName =='recip'][1] <- 1.1383</pre>

johan koskinen at unimelb.edu.au SAOM for network dynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Now let us simulate

Simulate from t_0 to t_1 now with reciprocity (simOnly = TRUE)

<pre>sim_model</pre>	<- sien	haAlgorithmCreate(
		projname = 'sim_model',
		cond = FALSE,
		useStdInits = FALSE, nsub = 0 ,
		simOnly = TRUE)
<pre>sim_ans <-</pre>	siena07([sim_model, data = mydata,
		effects = myeff,
		<pre>returnDeps = TRUE, batch=TRUE)</pre>

The object sim_ans will now contain 1000 simulated networks NOTE: this piece of code is unchanged

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Plot observed network and 9 simulated

johan koskinen at unimelb.edu.au SAOM for network dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The observed at t_1 and possible netowrks at t_1

イロト イポト イヨト イヨト 三日

Simulated networks v t_1 obs: triad census

(ロ) (同) (目) (日) (日) (の)

Simulated networks v t_1 obs: triad census

<pre>> triad.census(tmp4)</pre>																
	003	012	102	021D	021U	021C	111D	111U	030T	030C	201	120D	120U	120C	210	300
[1,]	2078	1329	745	146	80	52	65	217	37	0	68	16	65	10	30	22
<pre>> triad.census(mySimNets[1:9,,])</pre>																
	003	012	2 102	2 021D	021U	021C	111D	111U	0301	0300	201	120D	1200	120C	210	300
[1,]	2317	1296	5 681	78		111	97	174	15	5 2	74	5	17	11	26	
[2,	2408	1280	607	7 130	44	123	88	158	23	3	39	13	8	11	18	
[3,	2603	1257	7 604	1 73	36	84	69	135	8	1	42	11	11	8	16	
[4,]	2493	1356	5 575	5 92	53	105	69	124	16	2	36	6	8	9	11	
[5,	2470	1342	2 533	3 98	66	106	75	154	16	3	41	4	18	9	20	
[6,	2492	1119	762	2 81	40	83	97	163	12	2	58	8	11	6	11	15
[7,	2394	1358	3 574	86	55	133	89	144	19	3	57	7	10	11	19	
[8,	2466	1265	5 67 1	76	37	76	83	163	15	3	55	6	7	12	17	8
[9,	2450	1235	5 650	0 100	61	116	105	128	11	2	40	10	10	18	23	

Reciprocity is clearly not enough to explain the incidence of *transitive triangles* and *simmelian ties* (3 Mutual 0, Assymetric, 0 Null)

ヘロア 人間 アメヨア 人口 ア

Assume that *i* ALSO cares about *closure*

$$f_i(\beta, X) = \exp\left\{\beta_d \sum_j x_{ij} + \beta_r \sum_j x_{ij} x_{ji} + \beta_t s_{i,t}(x)\right\}$$

Modelled through, e.g.

transitive triplets effect, number of transitive patterns in *i*'s ties $(i \rightarrow j, j \rightarrow h, i \rightarrow h)$ $s_{i,t}(x) = \sum_{j,h} x_{ij} x_{jh} x_{ih}$

transitive triplet

・ロト ・ 理 ト ・ ヨ ト ・

-

Model

Objective function including $s_{i,t}(x)$:

- adding 1 \rightarrow 2: ... + β_t
- deleting 1 → 3: no change in closure
- adding $1 \rightarrow 4$: ... + β_t

Our simulated networks had too few 030T and 300 so we need to set $\beta_t \dots$

ヘロア 人間 アメヨア 人口 ア

Assume actors care about degree, reciprocity, and closure

Let the rate be equal for all $\lambda_i = \lambda = 4.5017$

 \checkmark on average every actor gets 4.5 opportunities to change

and set $\beta_d = -1.9024$

✓ here β_d < 0 - actors do not want too many ties

and set $\beta_r = 0.6794$

✓ here $\beta_r > 0$ - actors prefer reciprocated to assymetric ties

and set $\beta_t = 0.3183$

✓ here $\beta_r > 0$ - actors prefer ties that close open triads

van de Bunt data set

```
myeff <- includeEffects(myeff, recip,include=TRUE)</pre>
myeff <- includeEffects(myeff, transTrip,include=TRUE)</pre>
myeff$initialValue[
              myeff$shortName == 'Rate'] <- 4.5017</pre>
myeff$initialValue[
        myeff$shortName =='density'][1] <- -1.9024</pre>
myeff$initialValue[
           myeff$shortName =='recip'][1] <- 0.6794</pre>
myeff$initialValue[
           myeff$shortName =='transTrip'][1] <- 0.3183</pre>
```

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Now let us simulate

Simulate from t_0 to t_1 now with transitivity (simOnly = TRUE)

<pre>sim_model</pre>	<-	<pre>sienaAlgorithmCreate(</pre>							
		projname = 'sim_model',							
		cond = FALSE,							
useStdInits = FALSE, nsub = 0									
		<pre>simOnly = TRUE)</pre>							
<pre>sim_ans <</pre>	- sie	na07(sim_model, data = mydata,							
		effects = myeff,							
		<pre>returnDeps = TRUE, batch=TRUE)</pre>							

NOTE: this piece of code is unchanged

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Plot observed network and 9 simulated

johan koskinen at unimelb.edu.au SAOM for network dynamics

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

The observed at t_1 and possible netowrks at t_1

イロト 不得 とくほ とくほ とう

Simulated networks v t_1 obs: triad census

<pre>> triad.census(tmp4)</pre>																
	003	012	102	021D	021U	021C	111D	111U	030T	030C	201	120D	120U	120C	210	300
[1,]	2078	1329	745	146	80	52	65	217	37	0	68	16	65	10	30	22
<pre>> triad.census(mySimNets[1:9,,])</pre>																
	003	012	2 102	2 021D	021U	021C	111D	111U	030T	0300	201	120D	1200	1200	210	300
[1,]] 2320	1475	5 456	5 128	48	141	73	158	31	2	30	11	26	18	31	12
[2,] 2411	1352	2 586	0 117	54	96	62	152	25	i 2	32	9	29	2	19	18
[3,	2293	1279	663	3 143	47	92	70	186	20) 4	39	18	35	14	35	22
[4,]] 2171	1384	1 626	5 160	65	114	76	180	32	4	32	25	35	19	26	11
[5,] 2530	1395	5 446	5 136		99	54	129	25	i 4	19	10	25	6	21	10
[6,	2637	1179	9 535	5 97	34	81	74	173	19	3	52	10	16	8	26	16
[7,	2476	1346	5 521	1 105	44	104	82	141	27	4	32	9	14	19	28	8
[8,	2641	1262	2 588	8 47	40	74	77	122	9	5	47	7	6	12	15	8
[9,	2671	1272	2 510	0 60	46	99	71	126	15	i 5	21	5	14	9	15	21

Reciprocity togehter with transitivity seems enough to explain the incidence of *transitive triangles* and *simmelian ties* (3 Mutual 0, Assymetric, 0 Null)

ヘロン 人間 とくほ とくほ とう

Questions?

What effects are there?

- RSiena Manual http://www.stats.ox.ac.uk/~snijders/ siena/RSiena_Manual.pdf - check for shortName
- scroll through the effects available to you for your data
 myeff check for shortName
- also effectsDocumentation(myeff)

Where did I get these numbers?

イロン 不良 とくほう 不良 とうほ
Estimation by Method of Moments: data

Basics for data

- You need at least 2 observations on X(t) for waves t_0 , t_1
- First observations is fixed and contains no information about θ
- No assumption of a stationary network distribution

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Estimation by Method of Moments: procedure

How to estimate $\theta = (\lambda, \beta)$?

- pick starting values for θ
- simulate from X(t₀) until t₁ call the simulated network (-s)
 X_{rep}
- if statistic Z_k(X_{rep}) for parameter k is different to Z_k(X_{obs}), adjust accordingly

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Estimation by Method of Moments: aim

For suitable statistic $Z = (Z_1, \ldots, Z_K)$,

i.e., *K* variables which can be calculated from the network; the statistic Z_k must be *sensitive* to the parameter θ_k e.g. number of mutual dyads is sensitive to the reciprocity paramter (as we have seen)

The MoM estimate is a value: $\hat{\theta}$ of θ such that for

- observed stats Z(X_{obs})
- and the the expected value $E_{\theta}(Z(X_{rep}))$

$$E_{\hat{ heta}} \{ Z(X_{\mathrm{rep}}) \} = Z(X_{\mathrm{obs}}) .$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Method of Moments matches the moments

Do we have to do this for every update of the parameter θ ?

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Robbins-Monro algorithm

The moment equation $E_{\hat{\theta}}\{Z\} = z$ cannot be solved by analytical or the usual numerical procedures Stochastic approximation (Robbins-Monro, 1951) *Iteration step:*

$$\hat{\theta}_{N+1} = \hat{\theta}_N - a_N D^{-1}(z_N - z) ,$$
 (1)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

where z_N is a simulation of Z with parameter $\hat{\theta}_N$,

D is a suitable matrix, and $a_N \rightarrow 0$.

Computer algorithm has 3 phases:

brief phase for preliminary estimation of ∂E_θ {Z}/∂θ for defining D;

Computer algorithm has 3 phases:

- brief phase for preliminary estimation of ∂E_θ {Z}/∂θ for defining D;
- estimation phase with Robbins-Monro updates, where *a_N* remains constant in *subphases* and decreases between subphases;

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Computer algorithm has 3 phases:

- brief phase for preliminary estimation of ∂E_θ {Z}/∂θ for defining D;
- estimation phase with Robbins-Monro updates, where *a_N* remains constant in *subphases* and decreases between subphases;
- final phase where θ remains constant at estimated value; this phase is for checking that

$$\mathsf{E}_{\hat{\theta}}\left\{Z\right\} \approx z$$
,

and for estimating D_{θ} and Σ_{θ} to calculate standard errors.

・ロット (雪) (き) (き) (き)

Convergence

We say that $E_{\hat{\theta}}\{Z\} = z$ is approximately satidfied if, for each statistic $Z_k(X_{obs})$ is within 0.1 standard deviation of $E_{\theta}(Z(X_{rep}))$. This is provided in the output as the *convergence t-ratio* (and the overall maximum convergence ratio is less than 0.25)

Change to **BEHAVIOUR**

イロン 不得 とくほ とくほ とうほ

Satisfaction with new state: f_i + random component

johan koskinen at unimelb.edu.au SAOM for network dynamics

Change to **BEHAVIOUR**

イロト 不得 とくほ とくほとう

ъ

Satisfaction with new state: f_i + random component

johan koskinen at unimelb.edu.au SAOM for network dynamics

Change to **BEHAVIOUR**

イロト 不得 とくほ とくほとう

ъ

Satisfaction with new state: f_i + random component

For the behaviours, the formula of the change probabilities is

$$p_{ihv}(\beta, z) = \frac{\exp(f(i, h, v))}{\sum_{k, u} \exp(f(i, k, u))}$$

where f(i, h, v) is the objective function calculated for the potential new situation after a behaviour change,

$$f(i,h,v) = f_i^z(\beta, z(i,h \rightsquigarrow v)) .$$

Again, multinomial logit form.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Things that go into the objective functions - selection

Homophily effects:

counts of the number of ties to people that are "like me"

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Things that go into the objective functions - influence

Controls:

For influence effects: immitation persuation etc

Things that go into the objective functions - influence

For influence effects: immitation persuation etc

Things that go into the objective functions - influence

For influence effects: immitation persuation etc

3

イロト 不得 とくほと くほとう

johan koskinen at unimelb.edu.au SAOM for network dynamics

What is the purpose of having the embedded Markov Chain in continuous time?

What is the purpose of having the embedded Markov Chain in continuous time?

DYNAMICS

can model change of *tie* as dependent on current ties AND behaviour

can model change in *behaviour* as dependent on current behaviour AND the behavior of those you are tied to

What is the purpose of having the embedded Markov Chain in continuous time?

STATISTICAL

This is a statistical model that has estimable parameters for selection and influence

This is a generative model from which we can also generate replicate data AND assess GOF

What is the purpose of having the embedded Markov Chain in continuous time?

STATISTICAL

This is a statistical model that has estimable parameters for selection and influence

This is a generative model from which we can also generate replicate data AND assess GOF

Compare

- Generalized Estimation Equations
- Regressing behaviour wave 1 on wave 0

Example: 50 girls in a Scottish secondary school

Study of smoking initiation and friendship (starting age 12-13 years)

(following up on earlier work by P. West, M. Pearson & others).

with sociometric & behavior questionnaires at three moments, at appr. 1 year intervals.

Smoking: values 1-3;

drinking: values 1-5;

covariates:

gender, smoking of parents and siblings (binary), money available (range 0–40 pounds/week).

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Rename data that was automatically loaded

```
friend.data.w1 <- s501</pre>
friend.data.w2 <- s502</pre>
friend.data.w3 <- s503</pre>
drink <- s50a
smoke < - s50s
friendshipData <- array( c( friend.data.w1,</pre>
                                friend.data.w2,
                                friend.data.w3 ),
                            \dim = c(50, 50, 3)
```

Define dependent/independent data

friendship <- sienaDependent(friendshipData) drinking <- sienaDependent(drink, type = "behavior") smoke1 <- coCovar(smoke[, 1])</pre>

johan koskinen at unimelb.edu.au SAOM for network dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Join data and get effects

NBdata	<-	sienaDataCu	reate(friendship,	
				smoke1,	
				drinking)
NBeff ·	<-	getEffects(NBdata	a)	

johan koskinen at unimelb.edu.au SAOM for network dynamics

Define structural network effects

NBeff <- includeEffects(NBeff, transTrip, transRecTrip)</pre>

johan koskinen at unimelb.edu.au SAOM for network dynamics

Define covariate effects on the network (selection)

NBeff <-	<pre>includeEffects()</pre>	NBeff,			
		egoX,	egoSqX,	altX,	altSqX,
diffSqX,					
		intera	action1 =	drir "	nking")
NBeff <-	<pre>includeEffects()</pre>	NBeff, eg	goX, alt>	(, sim)	κ,
		intera	action1 =	"smol	ke1")

Define effects on drinking (influence)

johan koskinen at unimelb.edu.au SAOM for network dynamics

Define estimation settings and estimate

Result selection

Effect	par.	(s.e.)	t stat.
constant friendship rate (period 1)	6.21	(1.08)	-0.0037
constant friendship rate (period 2)	5.01	(0.87)	0.0042
outdegree (density)	-2.82	(0.27)	-0.0809
reciprocity	2.82	(0.35)	0.0559
transitive triplets	0.90	(0.16)	0.0741
transitive recipr. triplets	-0.52	(0.24)	0.0695
smoke1 alter	0.07	(0.17)	0.0343
smoke1 ego	-0.00	(0.15)	0.0747
smoke1 similarity	0.25	(0.24)	0.0158
drinking alter	-0.06	(0.15)	0.0158
drinking squared alter	-0.11	(0.14)	0.0704
drinking ego	0.04	(0.13)	0.0496
drinking squared ego	0.22	(0.12)	0.0874
drinking diff. squared	-0.10	(0.05)	0.0583

convergence *t* ratios all < 0.09.

Overall maximum convergence ratio 0.19.

Result Influence

Effect	par.	(s.e.)	t stat.
rate drinking (period 1)	1.31	(0.34)	-0.0692
rate drinking (period 2)	1.82	(0.54)	0.0337
drinking linear shape	0.42	(0.24)	0.0301
drinking quadratic shape	-0.56	(0.33)	0.0368
drinking average alter	1.24	(0.81)	0.0181

convergence *t* ratios all < 0.09.

Overall maximum convergence ratio 0.19.

イロン 不得 とくき とくき とうき

Everything you need to know (including scipts for all kinds of data) is avaiable at

http://www.stats.ox.ac.uk/~snijders/siena/

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()