Network Dependencies in Social Space, Geographical Space, and Temporal Space. Part I ${ }^{1}$

Johan Koskinen

Social Networks Lab
Melbourne School of Psychological Sciences
University of Melbourne

NetGlow June 2022

[^0]
The two basic types of data

NETWORK
nodes: Andras, Per, Zsofia
have ties: Andras \rightarrow Per

The two basic types of data

NETWORK
nodes: Andras, Per, Zsofia
have ties: Andras \rightarrow Per

BEHAVIOUR

attributes of nodes: Andras,
Per, Zsofia drink
Zsofia does not smoke

SAOM: longitudinal modelling

We have observations on NETWORK and BEHAVIOUR

At some fixed points in time
starting at t_{0}

SAOM: longitudinal modelling

We have observations on NETWORK and BEHAVIOUR

At some fixed points in time
starting at t_{0} followed by t_{1} $t_{0}<t_{1}$

SAOM: longitudinal modelling

We have observations on NETWORK and BEHAVIOUR

inferential task: explail how t_{0} change into t_{1}

SAOM: longitudinal modelling

We have observations on NETWORK and BEHAVIOUR

Especially the co-evolution:
selection
influence
inferential task: explail how t_{0} change into t_{1}

SAOM: longitudinal modelling

We have observations on NETWORK and BEHAVIOUR

Especially the
co-evolution:
selection
influence
inferential task: explain how t_{0} change into t_{1}

SAOM: longitudinal modelling

We have observations on NETWORK and BEHAVIOUR

Especially the co-evolution:
selection
influence
inferential task: explail how t_{0} change into t_{1}

The SAO Model

HOW?

inferential task: explain how t_{0} change into t_{1}

The SAO Model

Assume PARTIAL observations on a process

observations:
at t_{0}
and t_{1}
the rest:
missing

The SAO Model

Assume PARTIAL observations on a process

observations:
at t_{0} and t_{1}
the rest:
missing
the process explain how t_{0} change into t_{1}

What type of data do we want to explain: adjacency matrix

Data represented as adjacency matrices

$$
\mathbf{x}=\left(\begin{array}{ccccc}
. & 0 & 0 & 0 & 1 \\
1 & . & 0 & 0 & 0 \\
1 & 1 & . & 0 & 0 \\
0 & 0 & 0 & . & 0 \\
0 & 0 & 1 & 1 & .
\end{array}\right)
$$

where $x_{i j}=1$ or 0 according to wether $i \rightarrow j$ or not.

What type of data do we want to explain: longitudinal

Data represented as adjacency matrices
where elements change

$$
x\left(t_{0}\right)=\left(\begin{array}{ccccc}
. & 0 & 0 & 0 & 1 \\
1 & . & 0 & 0 & 0 \\
1 & 1 & . & 0 & 0 \\
0 & 0 & 0 & . & 0 \\
0 & 0 & 1 & 1 & .
\end{array}\right)
$$

What type of data do we want to explain

Data represented as adjacency matrices
where elements change

$$
x\left(t_{1}\right)=\left(\begin{array}{ccccc}
. & 1 & 0 & 0 & 1 \\
1 & . & 0 & 0 & 0 \\
1 & 0 & . & 0 & 0 \\
0 & 0 & 0 & . & 0 \\
1 & 0 & 1 & 1 & .
\end{array}\right)
$$

What type of data do we want to explain

Data represented as adjacency matrices
where elements change

$$
x\left(t_{2}\right)=\left(\begin{array}{ccccc}
. & 1 & 0 & 1 & 1 \\
1 & . & 0 & 0 & 1 \\
1 & 1 & . & 0 & 0 \\
0 & 0 & 0 & . & 0 \\
1 & 0 & 0 & 1 & .
\end{array}\right)
$$

SAOM: the rate of change

At random points in time, at rates λ_{i}

nodes/individuals/actors are given opportunities to change

SAOM: the direction of change

Conditional on an actor having an opportunity for change the probability for each outcome

SAOM: the direction of change

Conditional on an actor having an opportunity for change the probability for each outcome
© is modelled like multinomial logistic regression

SAOM: the direction of change

Conditional on an actor having an opportunity for change the probability for each outcome
© is modelled like multinomial logistic regression
© reflects the attractiveness of the outcome to the actor

Example: i has oppotunity to change/toggle $x_{i j}$ to $1-x_{i j}$
We call the new network $X(i \leadsto j)$

$$
x=\begin{array}{|l|l|l|l|}
\hline- & 0 & 1 & 0 \\
\hline \mathbf{0} & - & 1 & 0 \\
\hline \mathbf{1} & \mathbf{0} & - & 1 \\
\hline \mathbf{0} & 0 & 0 & - \\
\hline
\end{array}
$$

Of the three changes (for $j=2,3,4$) available to i (here 1)

Of the three changes (for $j=2,3,4$) available to i (here 1) the probability that i toggles the tie $i \rightarrow j$ is given by

Of the three changes (for $j=2,3,4$) available to i (here 1) the probability that i toggles the tie $i \rightarrow j$ is given by One-step jump probability

$$
p_{i j}(\beta, G)=\frac{\exp \left(f_{i}(\beta, G(i \leadsto j))\right)}{\sum_{h=1}^{n} \exp \left(f_{i}(\beta, G(i \leadsto h))\right)}
$$

where

Of the three changes (for $j=2,3,4$) available to i (here 1) the probability that i toggles the tie $i \rightarrow j$ is given by One-step jump probability

$$
p_{i j}(\beta, G)=\frac{\exp \left(f_{i}(\beta, G(i \leadsto j))\right)}{\sum_{h=1}^{n} \exp \left(f_{i}(\beta, G(i \leadsto h))\right)}
$$

where

- $G(i \leadsto j)$ is the network resulting from the change
- β are statistical parameters
- f_{i} describes the attractiveness of $G(i \leadsto j)$ to i
network at t_{0}

possible networks at t_{1}

van de Bunt data set

```
library('RSiena')
library('network')
library('sna')
tmp4[is.na(tmp4)] <- 0 # remove missing
par(mfrow = c(1,2))
coordin <- plot(as.network(tmp3))
plot(as.network(tmp4),coord=coordin)
```


Let us assume that i ONLY cares about not having too many or two few ties:

$$
f_{i}(\beta, X)=\exp \left\{\beta \sum_{j} x_{i j}\right\}
$$

meaning that

$$
p_{i j}(\beta, X)=\frac{\exp \left\{\beta\left(1-2 x_{i j}\right)\right\}}{\sum_{h=1}^{n} \exp \left\{\beta\left(1-2 x_{i h}\right)\right\}}
$$

because if currently $x_{i j}=1$, then the number of ties for i in $G(i \leadsto j)$ will be one less (-1), and if currently $x_{i j}=0$ then there will be one more $(+1)$

Simulation settings: actors only care about degree

Let the rate be equal for all $\lambda_{i}=\lambda=3.8311$
\checkmark is each iteration, actor with shortest waiting time 'wins' (and gets to change)
\checkmark on average every actor gets 3.8 opportunities to change
and set $\beta=-1.1059$
\checkmark if $\beta=0$ actor would not care if tie was added or deleted
\checkmark here $\beta<0$ meaning that actor wants less than half of the possible ties

van de Bunt data set

```
mynet1 <- sienaDependent(array(c(tmp3, tmp4),
    dim=c(32, 32,2)))
mydata <- sienaDataCreate(mynet1)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, recip,include=FALSE)
myeff$initialValue[
    myeff$shortName == 'Rate'] <- 3.8311
myeff$initialValue[
        myeff$shortName=='density'][1] <- -1.1059
```


Model: rate

waiting <- rexp $(32,3.8311)$
 hist(waiting)
 which(waiting $==\min ($ waiting)) \Longleftarrow the winner

Histogram of waiting

Model: conditional one-step change probability

Of course, in van de Bunt every actor has 31+1 choices for change

Now let us simulate

Simulate from t_{0} to $t_{1}($ simOnly $=$ TRUE $)$

The object sim_ans will now contain 1000 simulated networks

Extract networks

```
n <- dim(tmp4)[1]
mySimNets <- reshapeRSienaDeps( sim_ans , n )
```

The object mySimNets is a 1000 by n by n array of adjacency matrices

Plot observed network and 9 simulated

```
pdf(file='simnets1.pdf', width \(=9\), height \(=4.5\) )
\(\operatorname{par}(\mathrm{mfrow}=c(2,5), \quad\) oma \(=c(0,4,0,0)+0.1\),
    \(\operatorname{mar}=c(5,0,1,1)+0.1)\)
plot(as.network(tmp4), coord=coordin,
                main=paste('ties:',sum(tmp4) ) )
apply (mySimNets[1:9, , ], 1, function(x)
    plot(as.network(x),
    coord=coordin,
    main=paste('ties: ',sum(x))) )
dev. off()
```


The observed at t_{1} and possible netowrks at t_{1}

Simulated networks $v t_{1}$ obs

> dyad.census(tmp4)
Mut Asym Null
[1,] $46 \quad 83 \quad 367$
> dyad.census(mySimNets[1:9, ,])
Mut Asym Null
[1,] $27 \quad 91 \quad 378$
$[2] \quad 20 \quad 104 \quad$,
$[3] \quad 16 \quad 93 \quad$,
$\begin{array}{ccccc}{[4,]} & 19 & 101 & 376\end{array}$
$[5] \quad 21 \quad 96 \quad$,
$[6] \quad 16 \quad 98 \quad$,

Dyad Census
$[7] \quad 11 \quad 113 \quad$,
$\begin{array}{llll}{[8,]} & 20 & 95 & 381\end{array}$
$[9] \quad 15 \quad 106 \quad$,

Conclusions

A process where i ONLY cares about not having too many or two few ties does to replicate the reciprochity at t_{1} Assume that i ALSO cares about

Conclusions

A process where i ONLY cares about not having too many or two few ties does to replicate the reciprochity at t_{1}
Assume that i ALSO cares about having ties $i \rightarrow j$ reciprocated $j \rightarrow i$

$$
f_{i}(\beta, X)=\exp \left\{\beta_{d} \sum_{j} x_{i j}+\beta_{r} \sum_{j} x_{i j} x_{j i}\right\}
$$

meaning that probability that i toggles relationship to j

$$
p_{i j}(\beta, X)=\frac{\exp \left\{\beta_{d}\left(1-2 x_{i j}\right)+\beta_{r}\left(1-2 x_{i j}\right) x_{j i}\right\}}{\sum_{h=1}^{n} \exp \left\{\beta_{d}\left(1-2 x_{i h}\right)+\beta_{r}\left(1-2 x_{i h}\right) x_{h i}\right\}},
$$

Model

Simulation settings: actors care aobut degree and reciprocity

Let the rate be equal for all $\lambda_{i}=\lambda=4.2525$
\checkmark on average every actor gets 4.3 opportunities to change and set $\beta_{d}=-1.4163$
\checkmark here $\beta_{d}<0$ - actors do not want too many ties
and set $\beta_{r}=1.1383$
\checkmark here $\beta_{r}>0$-actors prefer reciprocated to assymetric ties

van de Bunt data set

```
myeff <- includeEffects(myeff, recip,include=TRUE)
myeff$initialValue[
    myeff$shortName == 'Rate'] <- 4.2525
myeff$initialValue[
    myeff$shortName =='density'][1] <- -1.4163
myeff$initialValue[
    myeff$shortName =='recip'][1] <- 1.1383
```


Now let us simulate

Simulate from t_{0} to t_{1} now with reciprocity (simOnly $=$

 TRUE)

The object sim_ans will now contain 1000 simulated networks NOTE: this piece of code is unchanged

Plot observed network and 9 simulated

mySimNets <- reshapeRSienaDeps(sim_ans,n)
plot(as.network(tmp4), coord=coordin,
main=paste('recip:',dyad.census(tmp4)[1]))
apply (mySimNets[1:9, ,], 1, function (x)
plot(as.network(x),
coord=coordin, main=paste('recip:
',dyad.census(x)[1])))

The observed at t_{1} and possible netowrks at t_{1}

Simulated networks $v t_{1}$ obs: triad census

-
- \quad
$1-003$

0
3-102

9-030T

10-030C

11-201

15-210

16-300

Simulated networks $v t_{1}$ obs: triad census

```
> triad.census(tmp4)
    0 0 3 0 1 2 1 0 2 ~ 0 2 1 D ~ 0 2 1 U ~ 0 2 1 C ~ 1 1 1 D ~ 1 1 1 U ~ 0 3 0 T ~ 0 3 0 C ~ 2 0 1 ~ 1 2 0 D ~ 1 2 0 U ~ 1 2 0 C ~ 2 1 0 ~ 3 0 0 ~
```



```
> triad.census(mySimNets[1:9,,])
    003 012 102 021D 021U 021C 111D 111U 030T 030C 201 120D 120U 120C 210 300
\(\left[\begin{array}{llllllllllllllll}{[1,]} & 2317 & 1296 & 681 & 78 & 51 & 111 & 97 & 174 & 15 & 2 & 74 & 5 & 17 & 11 & 26 \\ 5\end{array}\right.\)
```



```
\(\left[\begin{array}{llllllllllllllll}{[3,]} & 2603 & 1257 & 604 & 73 & 36 & 84 & 69 & 135 & 8 & 1 & 42 & 11 & 11 & 8 & 16\end{array} \quad 2\right.\)
[4,] 2493 1356 575 92 53 105 69 69 124 10 16 
[5,] 2470}13424\mp@code{533
```



```
\([8] \quad 24661265 \quad 671 \quad 76 \quad 37 \quad\),
```


Reciprocity is clearly not enough to explain the incidence of transitive triangles and simmelian ties (3 Mutual 0, Assymetric, 0 Null)

Assume that i ALSO cares about closure

$$
f_{i}(\beta, X)=\exp \left\{\beta_{d} \sum_{j} x_{i j}+\beta_{r} \sum_{j} x_{i j} x_{j i}+\beta_{t} s_{i, t}(x)\right\}
$$

Modelled through, e.g.
transitive triplets effect, number of transitive patterns in i's ties
$(i \rightarrow j, j \rightarrow h, i \rightarrow h)$
$s_{i, t}(x)=\sum_{j, h} x_{i j} x_{j h} x_{i h}$

transitive triplet

Model

Objective function including $s_{i, t}(x)$:

- adding $1 \rightarrow 2: \ldots+\beta_{t}$
- deleting $1 \rightarrow 3$: no change in closure
- adding $1 \rightarrow 4: \ldots+\beta_{t}$

Our simulated networks had too few 030T and 300 so we need to set $\beta_{t} \ldots$

Assume actors care about degree, reciprocity, and

 closureLet the rate be equal for all $\lambda_{i}=\lambda=4.5017$
\checkmark on average every actor gets 4.5 opportunities to change and set $\beta_{d}=-1.9024$
\checkmark here $\beta_{d}<0$ - actors do not want too many ties
and set $\beta_{r}=0.6794$
\checkmark here $\beta_{r}>0$-actors prefer reciprocated to assymetric ties and set $\beta_{t}=0.3183$
\checkmark here $\beta_{r}>0$ - actors prefer ties that close open triads

van de Bunt data set

```
myeff <- includeEffects(myeff, recip,include=TRUE)
myeff <- includeEffects(myeff, transTrip,include=TRUE)
myeff$initialValue[
                    myeff$shortName == 'Rate'] <- 4.5017
```

myeff\$initialValue[
myeff\$shortName =='density'][1] <- -1.9024
myeff\$initialValue[
myeff\$shortName =='recip'][1] <- 0.6794
myeff\$initialValue[
myeff\$shortName =='transTrip'][1] <- 0.3183

Now let us simulate

Simulate from t_{0} to t_{1} now with transitivity (simOnly $=$

 TRUE)sim_model <- sienaAlgorithmCreate(
projname $=$ 'sim_model',
cond $=$ FALSE,
useStdInits $=$ FALSE, nsub $=0$,
simOnly $=$ TRUE)
sim_ans <- siena07(sim_model, data $=$ mydata,
effects $=$ myeff,
returnDeps $=$ TRUE, batch=TRUE $)$

NOTE: this piece of code is unchanged

Plot observed network and 9 simulated

mySimNets <- reshapeRSienaDeps(sim_ans,n)
plot(as.network(tmp4), coord=coordin,
main=paste('recip:',triad.census(tmp4)[16])
apply (mySimNets[1:9, ,], 1, function(x)
plot(as.network(x),
coord=coordin, main=paste('300:
',triad.census(x)[16])))

The observed at t_{1} and possible netowrks at t_{1}

Simulated networks $v t_{1}$ obs: triad census

```
> triad.census(tmp4)
    003 012 102 021D 021U 021C 111D 111U 030T 030C 201 120D 120U 120C 210 300
[1,] 2078 1329}74
> triad.census(mySimNets[1:9,,])
    0 0 3 ~ 0 1 2 ~ 1 0 2 ~ 0 2 1 D ~ 0 2 1 U ~ 0 2 1 C ~ 1 1 1 D ~ 1 1 1 U ~ 0 3 0 T ~ 0 3 0 C ~ 2 0 1 ~ 1 2 0 D ~ 1 2 0 U ~ 1 2 0 C ~ 2 1 0 ~ 3 0 0 ~
```



```
\([2] \quad 2411 \quad 1352 \quad 580 \quad 117 \quad 54 \quad\),
```



```
[4,] 2171 1384 626 160 65 114 
[5,] 2530
[6,] 2637
[7,] 2476 1346 521 105 44 104 年, 82 141 
```



```
\([9] 2671 \quad 1272510 \quad 60 \quad\),
```

Reciprocity togehter with transitivity seems enough to explain the incidence of transitive triangles and simmelian ties (3 Mutual 0, Assymetric, 0 Null)

Questions?

What effects are there?

- RSiena Manual http://www.stats.ox.ac.uk/~snijders/ siena/RSiena_Manual.pdf - check for shortName
- scroll through the effects available to you for your data myeff-check for shortName
- also effectsDocumentation(myeff)

Where did I get these numbers?

Estimation by Method of Moments: data

Basics for data

- You need at least 2 observations on $X(t)$ for waves t_{0}, t_{1}
- First observations is fixed and contains no information about θ
- No assumption of a stationary network distribution

Estimation by Method of Moments: procedure

How to estimate $\theta=(\lambda, \beta)$?

- pick starting values for θ
- simulate from $X\left(t_{0}\right)$ until t_{1} - call the simulated network (-s) $X_{\text {rep }}$
- if statistic $Z_{k}\left(X_{\text {rep }}\right)$ for parameter k is different to $Z_{k}\left(X_{\text {obs }}\right)$, adjust accordingly

Estimation by Method of Moments: aim

For suitable statistic $Z=\left(Z_{1}, \ldots, Z_{K}\right)$,
i.e., K variables which can be calculated from the network; the statistic Z_{k} must be sensitive to the parameter θ_{k}
e.g. number of mutual dyads is sensitive to the reciprocity paramter (as we have seen)

The MoM estimate is a value: $\hat{\theta}$ of θ such that for

- observed stats $Z\left(X_{\text {obs }}\right)$
- and the the expected value $\mathrm{E}_{\theta}\left(Z\left(X_{\text {rep }}\right)\right)$

$$
E_{\hat{\theta}}\left\{Z\left(X_{\mathrm{rep}}\right)\right\}=Z\left(X_{\mathrm{obs}}\right)
$$

Method of Moments matches the moments

> Do we have to do this for every update of the parameter θ ?

Robbins-Monro algorithm

The moment equation $E_{\hat{\theta}}\{Z\}=z$ cannot be solved by analytical or the usual numerical procedures Stochastic approximation (Robbins-Monro, 1951)
Iteration step:

$$
\begin{equation*}
\hat{\theta}_{N+1}=\hat{\theta}_{N}-a_{N} D^{-1}\left(z_{N}-z\right), \tag{1}
\end{equation*}
$$

where z_{N} is a simulation of Z with parameter $\hat{\theta}_{N}$,
D is a suitable matrix, and $a_{N} \rightarrow 0$.

Computer algorithm has 3 phases:
(1) brief phase for preliminary estimation of $\partial \mathrm{E}_{\theta}\{Z\} / \partial \theta$ for defining D;

Computer algorithm has 3 phases:
(1) brief phase for preliminary estimation of $\partial \mathrm{E}_{\theta}\{Z\} / \partial \theta$ for defining D;
(2) estimation phase with Robbins-Monro updates, where a_{N} remains constant in subphases and decreases between subphases;

Computer algorithm has 3 phases:
(1) brief phase for preliminary estimation of $\partial \mathrm{E}_{\theta}\{Z\} / \partial \theta$ for defining D;
(2) estimation phase with Robbins-Monro updates, where a_{N} remains constant in subphases and decreases between subphases;
(3) final phase where θ remains constant at estimated value; this phase is for checking that

$$
\mathrm{E}_{\hat{\theta}}\{Z\} \approx z,
$$

and for estimating D_{θ} and Σ_{θ} to calculate standard errors.

Convergence

We say that $E_{\hat{\theta}}\{Z\}=z$ is approximately satidfied if, for each statistic $Z_{k}\left(X_{\text {obs }}\right)$ is within 0.1 standard deviation of $\mathrm{E}_{\theta}\left(Z\left(X_{\text {rep }}\right)\right)$. This is provided in the output as the convergence t-ratio (and the overall maximum convergence ratio is less than 0.25)

Change to BEHAVIOUR

Satisfaction with new state: $f_{i}+$ random component

Change to BEHAVIOUR

Satisfaction with new state: $f_{i}+$ random component

Change to BEHAVIOUR

Satisfaction with new state: $f_{i}+$ random component

For the behaviours, the formula of the change probabilities is

$$
p_{i h v}(\beta, z)=\frac{\exp (f(i, h, v))}{\sum_{k, u} \exp (f(i, k, u))}
$$

where $f(i, h, v)$ is the objective function calculated for the potential new situation after a behaviour change,

$$
f(i, h, v)=f_{i}^{Z}(\beta, z(i, h \leadsto v)) .
$$

Again, multinomial logit form.

Things that go into the objective functions - selection

Homophily effects:
counts of the number of ties to people that are "like me"

Things that go into the objective functions - influence

Controls:

© Gender
(2) Age
(3) Education

For influence effects:
immitation
persuation
etc

Things that go into the objective functions - influence

Controls:
© Gender
(2) Age
(3) Education

For influence effects:
immitation persuation etc

Things that go into the objective functions - influence

Controls:
© Gender
(2) Age
(3) Education

For influence effects:
immitation persuation etc

Summary

What is the purpose of having the embedded Markov Chain in continuous time?

Summary

What is the purpose of having the embedded Markov Chain in continuous time?

DYNAMICS
can model change of tie as dependent on current ties AND behaviour
can model change in behaviour as dependent on current behaviour AND the behavior of those you are tied to

Summary

What is the purpose of having the embedded Markov Chain in continuous time?
STATISTICAL
This is a statistical model that has estimable parameters for selection and influence
This is a generative model from which we can also generate replicate data AND assess GOF

Summary

What is the purpose of having the embedded Markov Chain in continuous time?
STATISTICAL
This is a statistical model that has estimable parameters for selection and influence
This is a generative model from which we can also generate replicate data AND assess GOF
Compare

- Generalized Estimation Equations
- Regressing behaviour wave 1 on wave 0

Example: 50 girls in a Scottish secondary school

Study of smoking initiation and friendship (starting age 12-13 years)
(following up on earlier work by P. West, M. Pearson \& others). with sociometric \& behavior questionnaires at three moments, at appr. 1 year intervals.

Smoking: values 1-3;
drinking: values $1-5$;
covariates:
gender, smoking of parents and siblings (binary), money available (range 0-40 pounds/week).

Rename data that was automatically loaded

```
friend.data.w1 <- s501
friend.data.w2 <- s502
friend.data.w3 <- s503
drink <- s50a
smoke <- s50s
friendshipData <- array( c( friend.data.w1,
                                    friend.data.w2,
                                    friend.data.w3 ),
dim = c( 50, 50, 3 ) )
```


Define dependent/independent data

> friendship <- sienaDependent(friendshipData)
> drinking <- sienaDependent(drink, type = "behavior") smoke1 <- coCovar(smoke[, 1])

Join data and get effects

NBdata <- sienaDataCreate(friendship, smoke1, drinking)
NBeff <- getEffects(NBdata)

Define structural network effects

Define covariate effects on the network (selection)

```
NBeff <- includeEffects( NBeff,
    egoX, egoSqX, altX, altSqX,
diffSqX,
    interaction1 = "drinking" )
NBeff <- includeEffects( NBeff, egoX, altX, simX,
    interaction1 = "smoke1" )
```


Define effects on drinking (influence)

> NBeff <- includeEffects(NBeff, avAlt, name="drinking", interaction1 = "friendship"

Define estimation settings and estimate

[^1]
Result selection

Effect	par.	(s.e.)	t stat.
constant friendship rate (period 1)	6.21	(1.08)	-0.0037
constant friendship rate (period 2)	5.01	(0.87)	0.0042
outdegree (density)	-2.82	(0.27)	-0.0809
reciprocity	2.82	(0.35)	0.0559
transitive triplets	0.90	(0.16)	0.0741
transitive recipr. triplets	-0.52	(0.24)	0.0695
smoke1 alter	0.07	(0.17)	0.0343
smoke1 ego	-0.00	(0.15)	0.0747
smoke1 similarity	0.25	(0.24)	0.0158
drinking alter	-0.06	(0.15)	0.0158
drinking squared alter	-0.11	(0.14)	0.0704
drinking ego	0.04	(0.13)	0.0496
drinking squared ego	0.22	(0.12)	0.0874
drinking diff. squared	-0.10	(0.05)	0.0583

convergence t ratios all <0.09.
Overall maximum convergence ratio 0.19.

Result Influence

Effect	par.	(s.e.)	t stat.
rate drinking (period 1)	1.31	(0.34)	-0.0692
rate drinking (period 2)	1.82	(0.54)	0.0337
drinking linear shape	0.42	(0.24)	0.0301
drinking quadratic shape	-0.56	(0.33)	0.0368
drinking average alter	1.24	(0.81)	0.0181

convergence t ratios all <0.09.
Overall maximum convergence ratio 0.19.

Everything you need to know (including scipts for all kinds of data) is avaiable at
http://www.stats.ox.ac.uk/~snijders/siena/

[^0]: ${ }^{1}$ More material at http://www.stats.ox.ac.uk/siena/; Material from Snijders greatlyacknowledged

[^1]: myalgorithm1 <- sienaAlgorithmCreate(projname = 's50_NB')
 NBans <- siena07(myalgorithm1,

 $$
 \text { data }=\text { NBdata, effects }=\text { NBeff, }
 $$

 returnDeps = TRUE)

