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Executive summary

Thetools and theories of social network analysis (SNA) are important to understand how socia
interactions influence the behaviour of social actors and how in turn their actions shape the socia and
organisational environment in which they operate. SNA has been employed to explain as diverse socia
phenomena as the diffusion of innovations; disease spread; team performance; coordination of corporate
board decisions; balance of trade between countries; etc. Understanding the relational structures of groups
and categories of social actorsis essential to understanding their goals, motivations and actions.

More recently, SNA has been used to inform intelligence decisions, to investigate the structure of terrorist
networks, and to examine exchanges within criminal and fraud networks. Although general socia science
suffers from issues of data inadequacy, it still enjoys the benefits of being able to gather open information
from surveys, experiments and interviews. Needless to say these options are not always available to
intelligence analysts who crucialy must deal with datainadequacies when data sources are neither open
nor complete.

For such reasons, recent scientific attention has been addressed to how data inadequacies affect SNA
conclusions (e.g. Kossinets, 2006). For SNA data, the presence of missing information can have major
effects, e.g. in determining connectivity and other system-level properties. Classical statistical treatments
for missing data are simply not appropriate for relational data. The recent literature provides a somewhat
better understanding of missing data effects but does not offer principled methods for drawing sound
inferences.

This paper summarises our approaches to establish principled inference based on incomplete SNA data.
These approaches are all under devel opment, but are extremely promising. We propose to deal with five
distinct yet interrel ated data problems:
« fitting statistical models to determine social network properties when particular links in the social
network are not known;
« methods for pooling incomplete relational data information from different sources,
« methods for dealing with network data involving covert actors (i.e where the network relations of
some actors are not known);
« methods for dealing with network data where some actors may be operating with multiple aliases
(network doppelgangers), and identifying who those actors might be;
« methods for dealing with network data where personal information about particular actorsis not
known.

We have made good progress on the first of these (in an illustrative example, we have managed to deal
successfully with 20% missing ties.) We can generalise our first approach to develop methods in the other
four areas. Each method provides principled inference in the face of incomplete data, and a measure of
uncertainty. Moreover, each method may be used to direct further data collection, identifying areas where
additional information would best diminish uncertainty. For each method, we envisage an iterative
exchange of data analysis and collection to optimise the chances of obtaining valuable information where
data gathering resources are limited.
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A. Fitting exponential random graph models to data with missing
information on dyads

A.I.1. Introduction

The importance of dealing with missing datain social network analysis (SNA) becomes clear
when we consider the fundamental differences between the nature of missing datain the typical
standard statistical analysis with the typical scenario in SNA.

Figure 1 Illustration of missingnessin SNA

It seems plausible to assume that we have an intuitive understanding of the network topology in
terms of distances between nodes. If we for example consider the two vertices A and B in Figure
1, and assumed that only the solid lines were present, it would be natural for us to presume that
whatever network processes that are going on in B's part of the network, these are unlikely to
affect the network processesin A's part of the network. Had there on the other hand existed atie
(dash-dot) between A and B that went undiscovered, the picture would have been quite different.
All of asudden A and B are directly connected and when thinking about the layout of the
network, the "pseudo-spatial” arrangement of nodes according to their proximity, we would be
inclined to redraw the entire network. Similarly, had a vertex C went undiscovered, it may well
have been the case that this vertex constituted an indirect link (via dashed edges) between A and
B. Again, our intuitive understanding of vertices A and B's position in the network in relation to
one another, aswell astheir overall position, would alter drastically with this new piece of
information. Should, on top of everything else, C be connected to what we previously considered
to be the centre of the network (dotted lines) many of our initial conclusions regarding the
workings of the network would be altered radically.



Very generally put, what distinguishes missingness in standard statistical setups from those in
SNA are the factsthat in statistical analysis with independent observations:
1. weonly redly worry about whether missing observations differ from the obtained
observations
2. interpretation of observed observations do not change with the knowledge (of the values)
of missing observations
In SNA, because of the inherent dynamics, the self-organisation, and emergent qualities, other
observations may be affected even if missing observations similar to observed observations.

As was pointed out by Stork and Richards (1992), ignoring missing data (e.g. in the form of non-
respondents), and only treating the available data (c.f. ‘‘available-case’” analysis, Little and
Rubin, 1987, sec. 3.3), may be problematic since thisis akin to redefining the boundary of the
network. The importance and the difficulties surrounding the issue of the so-called boundary
problem (Laumann et al., 1983), may be highlighted by considering the two basic ontological
principles for social networks: the nominalist approach and the realist approach.
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Figure 2 Sketch of principle ontological definitions of networks: (a) the nominalist approach, (b) the realist
approach

The nominalist approach to defining the network isin terms of a predefined set of verticesthat is
defined in terms of group membership, actor attributes, relations, events, etc, that is meant to
capture the relevant social neighbourhood of the actors for the particular relation that is studied.
A relation may aso be self-defining in terms of whom it relates to such as when work difficulties
are studied in an organisation (workplace), in which case, say, work difficulties are likely not to
have sensible interpretation across different settings. It is however hard to say how generally this
may be applied to relations and, as remarked by Kossinets (2006), when an substantial number of
ties extend beyond the predefine set of vertices (asin the case of Bearman et al., 2004, where
60% of choices made by student in the school studied extended outside the school) it may be
hard to motivate their exclusion. Not only the quantity of ties extending outside of the
prespecified set of vertices may be a problem but we may not always know whether or not the
most important ties are those that cross over or not.

Even when we may rule out errors associated with when the same type of tie crosses the
boundary, there may be different types of ties (that are not so easily confined to the set of
vertices) that cross over. An example of this could be when work place advice is contingent on
friendship (see e.g. Lazega and Pattison, 1999, for an elaboration on the interdependency of
different relations). Similar issues may result from overlap of settings (Pattison and Robins,
2002).

The realist approach assumes that the relevant boundary of the network is that which the actors
themselves consider to be the boundary. Roughly this would translate into defining the network



boundary from successively sampling waves in a snowball sampling approach. Conceptually this
might beg questions of how we determine the initial sample, where and how do we stop without
violating the realist approach and, what is more - what if the theory (hypothesis) of six degrees
of separation isindeed true?

The above issues serve to illustrate that it is not only difficult to deal with missing datain SNA
but also that the conceptualisation of missingnessin SNA highlights the manner in which
assumptions of ontology and epistemology are intertwined in SNA. (A fairly comprehensive
survey of network measurement is given by Marsden, 2005)

A frequently used model for thetiesin asocia network, the ERGM, may be derived from how
ties from one actor to another may depend on ties between other actors (Robins and Pattison,
2005). One interdependence assumption givesrise to the class of Markov graphs (Frank and
Strauss, 1986) with the accompanying dependence graph in the left hand panel of Error!
Reference sour ce not found., for 4 vertices (i, |, k, and I). Interestingly, if we were to remove
the variable corresponding to the edge indicator for e.g. {k,1}, and wish to estimate a Markov
model to the remaining indicators we see that the dependence structureis ‘‘distorted’’, that some
of the indicators that were not previoudly tied are so when we marginalise with respect to the
missing indicator.
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Figure 3 Dependence structure for Markov model on 4 verticeswith complete data (left) and with dyad {k,I}
missing (right)

A.I.2.Missing data and ERGMs

Thefirst category, A, assumed that our primary interest isin fitting an exponentia random graph
model (ERGM) (Frank and Strauss, 1986; Pattison & Wasserman, 1999; Robins, Pattison, and
Wasserman, 1999; Wasserman & Pattison, 1996; Snijders et al., in press) to social network data
in the form of standard sociometric data represented by an adjacency matrix (Wasserman and
Faust, 1994). The ERGMs have proved to be superior to many competing models (such as
various scale-free based models) in that ERGMs (and their recent extensions, c.f. Snijderset al.,
in press) are capable of reproducing real social networks to a greater extent (Robins, Wool cock,
and Pattison, 2005). Furthermore, we assume that information is missing as to the interactional
status for some dyads (pairs of actors), either as aresult of insufficient monitoring of some dyads
or through non-response or lack of knowledge of the ties to or from specific actors (in which
case information would be missing row-wise or column-wise from the adjacency matrix).
Researchers have pointed to the difficulty in dealing with this and similar types of missing data
(Burt, 1987) and the pitfalls of not dealing with it (Kossinets, 2003) but there are few
suggestions as to how we should deal with this type of missing data. Robins et a. (2004) define a
model for the ties in the network that allowed for some actors being respondents and others
being non-respondents but apart from not being flexible enough (it requires that non-respondents
are uniquely defined) their estimation relied on an approximation, the pseudo likelihood estimate
(MPLE) (Besag, 1975; was elaborated for random digraph models by Strauss and Ikeda, 1990;



Frank, 1991; and Wasserman and Pattison, 1996), of the maximum likelihood estimate (MLE),
that is known to be unreliable (Crouch, Wasserman, and Trachtenberg, 1998; Dahmstrom and
Dahmstrom, 1993; Corander, Dahmstrom, and Dahmstrom, 1998, 2002; Snijders, 2002;
Handcock, 2002, 2003). Other approaches to handling missing data rely chiefly on ad-hoc
methods for imputing missing data (Stork and Richards, 1992; Huisman, 2007; Gile and
Handcock, 2006).

Taking a Bayesian approach® we propose a Markov chain Monte Carlo (MCMC) agorithm that
given afew assumptions regarding what causes observations on dyads to be missing allows usto
fit an (curved) exponential random graph model to social network data with partially missing
information. Parameter inference conditional on complete datais performed using the Linked
Importance Sampler Auxiliary MCMC a gorithm (Koskinen, 2006) and for missing data the
conditional distribution is given straightforwardly by the (curved) exponentia random graph
model. Note that the success of this model-based missing data scheme relies crucially on the
Bayesian approach, since that is the only statistical paradigm capable of treating missing datain
aconsistent way (see the seminal paper on data augmentation by Tanner and Wong, 1987).
Thereis aso amore general motivation for favouring the Bayesian approach in that it is unclear
whether the asymptotic results that are the main motivations for using ML estimation hold.
Tentatively it looks asif the normal approximations of the distribution of MLES and standard
errors are reasonably good (as judged by the similarity of the point estimates and estimated s.e.s
to the posterior distributions in Koskinen, 2004; for possible pitfalls when using MLEs for binary
data see e.g. Mantel, 1987). That said, the MLE istypically used because it is consistent (i.e.
given enough datathe MLE will be arbitrarily close to the true parameter values) but since we do
not really know how the ERGM scales up we don't know how to make use of this asymptotic
result (see Anderson, Butts, and Carley, 1999; Robins, Woolcock, & Pattison, 2005, for scaling
up; some asymptotic results for exponential family distributions with interdependent
observations are given in Strauss, 1986).

Being able to accommodate missing data is important to social networksin general, since it
provides away of dealing with scaling effects. It iswell known that ERGMs defined for different
size networks are not readily comparable because of how different graph statistics ‘* scale-up’’
differently (again, Anderson, Butts, and Carley, 1999; Robins, Woolcock, & Pattison, 2005).
Hence, if you disregard the missing portion of a network when fitting an ERGM or amultivariate
ERGM, you will end up with amodel that is not (in principle) comparable on the size level of
the network you really want to investigate.

The notion of missing data on the level of the dyads extends the set-up where actors may be
unambiguously classified as respondent or non-respondents (Robins et a., 2004) to data
collection schemes where dyads are observed one at atime. Other interesting extensions include
the cases of missing unknown actors; Multivariate ERGMs (Pattison and Wasserman, 1999;
Koehly & Pattison, 2005) where different relations may be defined on different subsets of actors;
Similarities of different networks of different sizes.

We briefly discuss performance of the suggested approach and its limitations. Of particular
interest is the question of how little datais needed for the inference scheme to be practically
feasible. We provide some conditions that have to be met in order for inference to be possible
when we have missing data.

! For an accessible and non-technical introduction to Bayesian inference in a general behavioural and social science
context is given in for example the special issue of Sociological Methods and Research (Western, 1999)



Central to solving thisinferential problem is the development of the LISA agorithm and hence it
must be consider afirst priority for the project to write up and submit Koskinen (2006). Some
initial progress has been made and the algorithm seems to compare favourably with the only
other available algorithm (Mgller et a., 2005) for performing Bayesian inference for this class of
models (models for which the normalising constant in the likelihood is not analytically tractable;
Note however, that there is an approximate Bayesian inference scheme proposed in Koskinen,
2004a). The second step isto apply LISA to the problem of missing data as framed here and
subject Koskinen (20074) to public scrutiny. Some progress is reported here in the research plan
and tentatively we can conclude that in a case study, the removal of up to two actors from athe
collaboration network of 36 lawyers (Lazega, 2001) has little influence on the parameter
estimates.

Future extensions consist primarily of extending the model and inference scheme to include
more complicated missing data mechanisms than that used in Koskinen (2007a). In the long run
it would be desirable to have more realistic assumptions about what causes data to be missing.
Some extensions that increase the plausibility of missing data scheme are easy to incorporate in
theory but to asses whether these are practically implementable is an empirical issue aswell as
matter of technical experimentation.

A.ll. TheLinked Importance Sampler Auxiliary Variable (L1SA)
Metropolis Hastings for Distributionswith Intractable Normalising
Constants.

In most instances of Bayesian anaysis (for a comprehensive treatment of Bayesian inference see
for example Bernardo and Smith, 1994, Lindley, 1965, and Box and Tiao, 1973) of empirical
data one has to rely on numerical methods for estimation. The most common set of tools for
performing numerical Bayesian inference is Markov chain Monte Carlo (M CMC) methods
(Gilks et al., 1996). Rather than calculating point estimates, measures of uncertainty, interval
estimates, etc, analytically from the posterior distribution of the parameters given observed data,
MCMC is amethodology for drawing samples from the posterior distribution. Since all
information and the extent of the uncertainty regarding the parametersis captured by the
posterior distribution, all relevant quantities needed for drawing conclusions about the model can
be obtained from the posterior sample. For example we may calcul ate the posterior expected
values for a parameter given data using the ergodic mean, i.e. taking the sample average for a
parameter in the posterior sample. The main advantage of MCMC is that the precision of the
results obtained depend in principle only on the number of sample points drawn from the
posterior of the parameters given data (Tierney, 1994).

MCMC for posterior sampling typically only requires that the posterior distribution is known up
to anormalising constant. This means that we only need to be able to evaluate the likelihood
function and the prior distribution for any given parameter point. Lenient though this
requirement is, there are several important models in statistical mechanics and in the social
sciences where the likelihood function cannot be evaluated because the normalising constant in
the likelihood is analytically intractable. To the extent that Bayesian analysis has at all been
conducted for this class of modelsit has relied on approximate numerical methods with unknown
properties (Mgller et al., 2005). Having to rely on approximate procedure is unsatisfactory if not
because the extremely genera results for MCMC that hold under very generous assumption do
not apply and the appropriateness of any given approximation islikely to be very sensitive to
what model is used and what data anal ysed and hence the appropriateness has to be decided on a
case to case basis. This has an inbuilt contradiction in that it may prove difficult to assess the
appropriateness when there is no procedure to eval uate the approximation against.



Here we summarise work in progress building on Koskinen (2006) to propose and investigate the
properties of an ‘‘exact’” or *‘pure’” MCMC agorithm for performing Bayesian inference for
models with intractable normalising constants. Because of the performance deficiency of the
auxiliary variable MCM C algorithm (SISA) proposed by Mdller et al. (2005) when applied to
complex models we propose instead the use of The Linked Importance Sampler Auxiliary
Variable (LISA) Metropolis Hastings for Distributions with Intractable Normalising Constants.
We show how the poor mixing of the SISA can be understood if SISA isformulated as aregular
MCMC with an embedded importance sampler that estimates the normalising constant in each
step using only one sample point. We proceed to suggest that this makes it natural to replace the
one-sample simple importance sample by more elaborate and proved more efficient variations of
the importance sampler. Thereisahost of different very efficient importance sampler and
Gelman and Meng (1998) brought recently brought to the attention of the statistical community
the similarities and communalities between traditional importance samplers and methods that
have long been used in the Physics literature. Unfortunately the ergodic theorem (Tierney, 1994)
that ergodic estimator of the normalising constant converges to its mean almost surely as the
number of sample points tendsto infinity is of little use to use since wefirstly have to take an
estimate in each iteration of the MCMC and secondly because while the estimate of the
normalising constant is simulation consistent the estimate of the acceptance ratio is not. It turns
out however, that a specific importance sampler, the linked importance sampler (LIS), can be
incorporate in the MCMC as an auxiliary variable when the space on which the importance
distribution is defined is considered an extended sample space. This extended sample spaceis
discrete but is of a quite complicated nature. However, we need to consider the variable defined
on the extended state space explicitly in the sense that we need to save memory-consuming
variables, the part of the LISA that concerns the auxiliary variable reduced to taking an
importance sample.

A.ILL Model definition and notational preliminaries

We consider inference for afamily of models for avariable X, taking valuesin afinite space 2.

These models are assumed to be indexed by ap x 1 vector 6 e ®cR of rea-valued parameters
and that a model may be written with a probability mass function (pmf) of the form

P(X |6) =Ziqg(><) [(E-1)

0

where q,(X) isarea valued function of both the parameter vector and the variable X, and

Z,= ).9,(V)

Uear

is the normalising constant (or partition function according to these models' use in statistical
mechanics, Strauss, 1986) that is only afunction of the parameter vector 6.

A.II1.2. Maximum likelihood estimation

For al but the trivial parameterisations of the models considered here, the main obstacle to
performing statistical inferenceisthe fact that Z, isanalytically intractable. Although the

function g may itself be relatively easy to evaluate, given 6 and X, Z, isasum over a set whose
cardinality quickly becomes very big as a function of the number of coordinates or elements of
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X. The sample space for an Ising model on an n x mgrid, for example, has a cardinality of 2™.
An exponential random graph model (Frank and Strauss, 1986; Pattison & Wasserman, 1999;

Robins, Pattison, and Wasserman, 1999; Wasserman & Pattison, 1996; Wasserman and Robins,
2005, Snijders et d., in press, Hunter and Handcock, 2006) for the directed graph on n vertices

has a sample space of cardinality 2"™™* . Many of the models considered here may be seen as
special cases of the Gibbs distribution defined for different applications and sample spaces.
Examplesinclude Markov random fields (Besag, 1975; Cressie, 1993); Markov point processes
(Ripley and Kelly, 1977; Mgller and Waagepetersen, 2003b); and metric random graphs (Banks
and Constantine, 1998). Non-Bayesian inference first relied on pseudo likelihood estimation
(Besag 1974; Frank and Strauss, 1986; Strauss and Ikeda, 1990; Geyer and Thompson 1992) but
because the pseudo likelihood estimates (MPLES) thus obtained are suspect in certain
circumstances and because of the generally higher efficiency of the maximum likelihood
estimator (MLE) Geyer and Thompson (1992) proposed a Markov chain Monte Carlo (MCMC)
scheme for performing approximate MLE inference. The MLE can be obtained using MCMC to
get an approximation of the normalising constant (e.g. Geyer and Thompson, 1992; Gelman and
Meng, 1998; Gu and Zhu, 2001) and for afew special cases the normalising constant can even be
calculated exactly using an iterative scheme (Reeves and Pettitt, 2003). For a subset of
distributions in the exponential family of distributions Lindsey (1974) proposed a method for
fitting distributions to datain such awas so as the normalising constant does not have to be
evaluated (Aitkin, 1995). The properties of the exponential family of distributions have also been
utilised for MLE algorithms based on cumulants (Dahmstrém and Dahmstrom, 1993; Corander,
Dahmstrom, and Dahmstrém, 1998, 2002) and the moment equation using either stochastic
approximation (Snijders, 2002) or importance sampling (Crouch, Wasserman, and Trachtenberg,
1998; Handcock, 2002; for the extension to the curved exponentia family of distributions see
Hunter and Handcock, 2005).

Here we propose a Bayesian approach primarily because it gives us more nuanced information
regarding the parameters than the ML estimation that typically only provides us with points
estimates and standard errors. In addition to the wealth of information provided about the
parameters by the posterior distribution, a Bayesian inference scheme also opens for ways of
performing model selection (using posterior predictive p-values, Meng, 1994, or Bayes factors),
handling missing data, etc. Another reason is that the Bayesian inference has somewhat more
favourable properties. Although it islikely to have asmall impact on the actua analysis, it is
unclear whether the asymptotic results that are the main motivations for using ML estimation
hold. Tentatively it looks asif the normal approximations of the distribution of MLEs and
standard errors are reasonably good (as judged by the similarity of the point estimates and
estimated s.e.sto the posterior distributions in Koskinen, 2004; for possible pitfalls when using
MLEsfor binary data see e.g. Mantel, 1987). That said, the MLE istypically used because it is
consistent (i.e. given enough datathe MLE will be arbitrarily close to the true parameter val ues)
but with interdependent observations the asymptotic results are different (Strauss, 1986).

A.IL3. Previous Bayesian approaches

To be able to evaluate the likelihood function is as central to Bayesian analysis asit isto non-
Bayesian analysis. Given that non-Bayesian estimation previously relied on maximisation of the
pseudo likelihood it is perhaps a natural approach to perform Bayesian inference using the
pseudo likelihood rather than the true likelihood function as was done in Heikkinen and
Hogmander (1994). This transforms the problem into aregular inference issue and standard
MCM C methods may be used but Heikkinen and Hégmander (1994) acknowledged that it is
unclear what distribution one samples from. Another way of avoiding having to evaluate the
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normalising constant is for example by clever use of prior distributions (Besag et a., 1991) or
limiting the analysis to finding a point estimate (Heikkinen and Penttinen, 1999).

As mentioned above, many non-Bayesian methods exist that depend on MCM C approximation
of the normalising constant. Since there are numerous efficient algorithms for numerically
calculating (approximating) the normalising constant (Gelman and Meng, 1998), many MCMC
schemes have been proposed for models with intractable normalising constants whereaMCMC
approximation to the normalising constant in the likelihood is substituted for the exact value.
Normalising constants can be evaluated on a grid of parameter values and stored (Berthelsen and
Magller, 2003) or estimated repeatedly in the course of the MCMC, using a sample from an
importance distribution that is stored off-line (Koskinen and Robins, 2007) or regenerated on-
line (Koskinen, 2004a).

Common to the previously employed Bayesian inference schemes are that it is hard to establish
what properties MCMC that relies on approximations to distributions rather than the exact
expressions has. The estimators of the normalising constant that are currently available are
mostly constructed to estimate individual constants (or ratios of constants) and are not suited to
repeated estimation. If one wishes to have one estimate or approximation of anormalising
constant oneiswilling to allow for more iterations, to sacrifice efficiency for precision.

Magller et a. (2005) recently proposed the first generally applicable ** exact’”” MCMC agorithm
for distributions with intractable normalising constants. By introducing an auxiliary variable
defined on the same state space as data, they avoid having to deal with the normalising constant
in evaluation of the likelihood explicitly.

A.Il.4. Obtaining the posterior distribution from posterior simulation

If we for the model (E-1) have aprior distribution z(8) , the posterior distribution of 6 given the
we have observed data X, is given by

w(01%)= 70 1 2 a,00(0).

where
m(x) = [ 56, (X)7(0)d0

isthe marginal likelihood. The Metropolis-Hastings (MH) agorithm produces an MCMC sample
(0™, from the posterior distribution that can be used for exploring the posterior distribution.

Aniteration in the MH algorithm consists of proposing a move from the present point 6% to a
new point 6* draw from aproposa density q(&* |6*) and accepting this move, setting
0" = g* with aprobability min(1,H), where H is the Hastings ratio

_ 7(6*]X) q(@™ |6*)
-~ 2(0%|X) q(er10%)
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The marginal likelihood, that istypically very hard to evaluate, cancels in the Hastings ratio
sinceit isonly afunction of data. Hence, drawing parameters from the posterior distribution in
the MH reduces to a sequence of evaluations of the likelihood function (and prior distribution),
something that in the standard case is easily done. Here we cannot evaluate the likelihood by
assumption wherefore the cancellation of the marginal likelihood in the Hastings ratio is of little
comfort to us.

A.IL5. SISA, the auxiliary variable MCMC

The problem in creating a MH (or indeed any type of MCMC) for the models considered hereis
that in the Hastings ratio

_ 0, (X)/ Z,,. q(g(k)|67*) 7(60*)
0,0 (X)/Z,g(k) q(o* |9(k)) ”(e(k))

isthat we cannot evaluate theratio A(6*,60%)=Z , / Z,.. To circumvent the need to evaluate
A(6*,6%) while retaining the properties of the MCMC scheme, Maller et al. (2005) proposed
to introduce an auxiliary variable Y, that has the same state space .2 as X, and to set up the MH
to produce asample (8™,Y ™) from the joint posterior of Y and 6. By letting Y have the pmf
dy, (Y)/Z,, for 6, fixed, the Hastingsratio for the joint acceptance of (6*,Y*) becomes

@00z 802y g0 10y £@)
qg(k) (X)/Ze(k) qgo (Y (k))/ZgO q(9*1Y* |9(k)’Y(k)) ﬂ(g(k)) .

While we see that the normalising constant Z, in the pmf of Y cancel out, the problem of
evauating A(6*,0%) remains. Thetrick employed in Mgller et a. (2005) was o firstly
factorise the proposal density q(6*,Y*|0®,Y® ) =q(Y*|6*)q(0* |6") sothat Y isdrawn

conditional on the proposed new value of 6. Secondly, the conditional proposal distribution for Y
issetto q,.(Y)/Z,. . Doing this, the Hastings ratio simplifies to

_ 0 (X)/Z, G, (V) a(Y®6%) g0 |6*) =(6*)

e (X)/ Z G, (Y®) a(Y*[6%) q(e0%) z(0)

0, (X)/Z, G, (YF) G (YR Z,0 q(6® |6*) z(6%)

Gy (X)/ Zyy U, (Y®) 0 (Y¥)/2Z, (6% ]6%) 2(0)
_ G (X) 9, (V%) G (YY) q(0% |6%) 7(6%)
e (X) 0, (YY) 0, (Y*) q(ex16%) z(0)

and A(6*,6%) dissapears. Hence, with only a bit of algebra we have done away with the need

to evaluate the normalising constant. We will call this agorithm SISA because of itsrelation to
simple importance sampling, to be more closely described in section A.1.vi.

A.IL.6. Why SISA? Mixing of the auxiliary variable MCMC

In the paper Mdller et al. (2005) make the remark that for some models and parameter
specifications the SISA has atendency ‘‘ get stuck’” for long times. In the Illustrations section of
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this paper we intend to show further examples of this when the SISA is applied to models with
more complicated variable interaction than the autol ogistic model. In general however, thereis
cause for suspicion or at least some reasons to be cautious as to the performance of the SISA.

Firstly, note that in order to accept a proposed move in SISA, we need to accept the update to
both Y and 6. This suggests that the acceptance rate of SISA should be considerably lower than a
MH using the true Hastings ratio. Clearly the choice of distribution for Y is crucia to retain an
acceptable acceptance rate but it is not immediately clear how the Hastings ratio in the SISA
relates to the true Hastings ratio. Mgller et al. (2005) only give some heuristic motivations for
the choice of auxiliary density. Secondly, for the algorithm to work 6 has to be independent of Y
given X and 6,, which would seem to have the interpretation that the posterior distribution is

“‘diffused’’ or spread out.

For understanding the performance and (loosely speaking) efficiency of the SISA it is helpful to
consider SISA in terms of importance sampling. If we inspect the part in the Hastings ratio in the
SISA agorithm that pertains to the auxiliary variable and write

A, 09 yx ywy 2 A0 Y")
A(g(k) 0, Y(k))
where
2 Y
A0, vy =)
0, (Y)

we see that f\(&,@o;Y) is an estimator of A(#,6,) in the sense that

Z,

1
}Z_aqla(Y) = Zg .

E,[A@.0;V)]=

Yeit

{q% (Y)
q,(Y)

In other words, if Y,,...,Y,, isasample from the importance distribution g,(Y)/Z,, the ergodic
average A(6,6,) = ﬁZ[\(@, 0y; Y
A(6,6,) . The SISA may then be seen as a Metropolis-Hastings algorithm wherea SISisrunin
each iteration to approximate the true Hastings ratio. Given some regul arity assumptions (and
assuming that the sample points Y,,...,Y,, areapproximately independent) A(6,6,) isa
simulation consistent estimator of A(&,6,) with variance Var, , lf\(&,@o; Y)J/ M . Without going

into too much detail (some of which istreated in the following section), we may note that thereis
reason to be concerned about the fact that SISA employs SIS with only M = 1 sample point.

) isthe simple importance sampler (SIS) estimator of

m

A.IL7. Importance sampling for calculating ratios of normalising
constants

Here we are going to briefly recap different kinds of importance samplers. We are not making
any claims at this being an exhaustive account since there are many good reviews and
introductions to importance sampling (e.g. Gilks et al., 1996, and in particular Gelman and
Meng, 1998).
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All.7.a. Simple importance sampling
As mentioned above, the simple importance sampler (SIS) estimator of the ratio of normalising
constants A(6,6,), is A(0,6,) =+ > A(9,6,;Y,) for Y,,...,Y,, isasamplefromthe
importance distribution q,(Y)/Z,. Independence is not needed for the estimator to be

simulation consistent but the variance will be larger due to autocorrelation. SIS is an intuitive
and straightforward way of estimating ratios of normalising constants and we only really require
that the support of Y under the different distributions defined by and 6 is the same, that g,

dominates q, . In most applications for finite supports this condition is met but it is common for
the supportsof g, and g, to be well separated in the sense that thereis aregion in 20 which has

avery low probability under both g, and g, that separates the regions of high probability under
the respective distributions asillustrated in Figure 4.

P(X|6,)

P(X|6))

Figure 4 Two supportsthat are well separated

This situation means that we are rarely going to get Y that have high probability under g, when
g, isused as the importance distribution. Thistypically manifestsitself as high or infinite

variance for A(6,6,) . Note however that this also applies to less extreme cases as long as the
““overlap’’ between distributionsistoo small.

In addition to the high variability and instability of SISA due to the fact that M = 1, in the course
of running SISA we have to perform many SIS for many different values of . Consequently
thereis nothing to assure usthat ¢, when g, are close to eachother other than that 6, ischosen

so that most proposed values of & arecloseto 6.

A.ll.7D. Bridged importance sampling

To remedy the deficiency of SIS when the supports are separated we may introduce a bridging
distribution between g, when ¢, connecting their respective supports. We do this by expanding

A(6,6,) using abridging distribution indexed by a parameter 6,

zZ 7 Z
A(O,0) =" = "% y "tz
0.0,) Z Z

4 01/, ZH
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With a bridging distribution g, =~ we write the estimator A(6,6,) = A(6,6,,,)A(6,,,6,) - Hence,
even if the supportsof g, and g, aredigoint, thereis some overlap between the supports of g,
and g, ,and between g, ~and g,.asillustrated in Figure 5.

AXIG) P(X|2)

. N P(X18)

S

Figure 5 Two digoint supportswith the support of a bridging distribution linking them

In practice we may be required to have more than one bridging distribution but the principle
remains unchanged.

A.ll.7.c. Path sampling
Gelman and Meng (1998) aerted the statistical community to the affinities between existing
importance samplersin the statistical literature and various methods used in physics for
calculating ratios of normalising constants. In particular path sampling is an elegant
generalisation of bridged importance sampling. Consider extending the number of bridging
distributions to ‘* uncountably many’’ bridging distributions. We could for example have
bridging distributions indexed by parameters 4(t) for a smooth mapping &: [0,1] — 0 thatis
linear O(t) =t4, + (1—t)64, . Thedistributions given by t would then connect 6(0) = g, with
6(1 = 6, in acontinuous fashion. The estimator of the logarithm of A(6,,6,) may then be
derived from the path sampling identity:

dow) 4,

1
log A(8,,6,) = _[ EY|€(t){ log Qo) (Y)}
0

do(t)

The most straightforward estimator is suggested by the fact that the RHS of the path sampling
identity looks like the expectation of the quantity in the integrand with respect to arandom
variablet eR(0,1). Hence, we may take asample t;,...,t, from auniform distribution and for

each 4(t,) wedraw Y and calculate the quantity in the integrand and in the end we average these
quantities.

A.ll.7.d. Linked importance sampling (L1S)

Neal (2005) propose a method he called linked importance sampling (LIS) that combines the
merits of the SIS (being unbiased) with the advantages of using bridging distributions while not
reguiring more than one independent realisation from an importance distribution. The path
sampler, though being very efficient, requires that each sample point used is independent of the
other given the parameters. When we use MCMC to generate sample pointsin the data space this
tranglates into having to wait for the MCMC to burn in between each sample point. LIS is best
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describes a sequence of MCM C samples each from different distributions but that are linked (as
in share arealisation) with each other. The principleisillustrated in Figure 6. In order for the
estimator calculated in LIS to have the right properties we need to choose the starting points of
the MCMC samplesin a specific way. In addition we a so have perform MCMC sampling
forward in time as well as backwards in time.

Figure6 Anillustration (based on Figure 1 in Neal, 2005) of LIS that startsin the green vertex on theleft and
endsin the green vertex on theright

All.7.d.i. Simulating forwards and backwards
When we draw sample points Y from q,(Y)/Z, using MCMC we usually simulate forwards
with Markov chain transition probabilities T, , which may be schematically represented as

Y(t) BN Te (Y(t) Y(Hl)) BN Y(Hl)
but we may also simulate backwards
Y (t-1) « Tg (Y (t) Y (tfl)) <Y (t)

using the reverse transition probabilities T ,. Most of the time we are dealing with reversible
MCMC inwhichcase T,(Y,X)=T,(Y,X).

All.7.d.ii. The sample
The estimator is based on K sample points from m different distributions

YO,y
YOy
YOy

drawn using Metropolis-Hasting transition probabilities T, and T, , for
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0(0) = 0,,6(D),...,0(m) = 4,.

A.I1.7.d.iii. Connecting the samples
The m samples are connected in points

iyt @Nd vy, v

m

such that given z; and Y®,..., Y9,

(VJ+1) L (/‘J)
YU oy )
Given v, and Y we createthe chain Y®,..., Y™ by smulating forward from Y using
T, (Y Y 9y T, (Y 7Y 9972 ete., until we have produced Y (. We also simulate
backwards from Y using T ., (Y, Y ™), Ty (Y7, Y 7)) | etc, until we have
produced Yj(l) . Theimplied pmf of achain conditional on the insertion point and the linking
stateis

vj—l . . K ) .
Y, 1Y) =TT Ty 046 YO T (V0. 59).
i=1 i=v

J

A.Il.7.d.iv. Choosing connection points

We have now explained how to produce the m sample chains and how to link them to eachother.
We now proceed to explain how to choose the connection points. After v, isdrawn uniformly at

random, the starting state Y;** is chosen according to g, (Y)/Z, . Thefirst chainis simulated

as described above. To choose which of the K sample points that should provide the link to the
next chain, we choose ; with probabilities

(u))
Wiy (Y5™)

plu; (Y)Y =— —,
2 Wi (Y1)

where

Wyiy o (Y]) = \/qB(J)(Yj(#J))qe(Hl) (Yj(ﬂJ))/qe(j)(Yj(M))
and insertion points v; uniformly on {1,...,K}.

All.7.d.v. The estimator
Given asample (Y, u,v), an estimate of A(6,,0,) isgiven by
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m “ (i)
fLs (Y, u,v)= H Zi:lw‘g(i)ﬂ(jﬂ) (Y;"”)

: K My
=1 Zi:1W9<j+1)ﬂ(J> (Yia

All.7.d.vi. Why LISworks - a tentative proof

Here we outline a proof of the unbiasedness (simulation consistency) of LIS, the chief aim of
which will be for understanding how LIS isincorporated in the MCMC algorithm LISA. Details
of the proof are given in Neal (2005).

Given afixed starting point Y,"*, the sampling scheme outlined above defines a distribution

H;Oﬂl (Y, u,v)
qy, (Y"1 Z,

on HL,%‘K x{L....K}x{L,...,K}, where TT}, , (Y, ,v) =P}, (Y, 1,v)/ Z, . Thedistribution

Pegﬁl (Y, u,v) issimply that which isimplied by drawing linking states, insertion points and
simulating forwards and backwards

Pha (Yo i) = [ [HTICY, 1v, Y1) pla; 1(Y)S) -
j=1
For each (Y, ,v) we may also define the algorithm in reverse, i.e. starting in Y “~ | treating this

as Y"¥ and proceeding as above but swapping rolesfor v and x . This analogously defines a
pmf Pe?,yo (Y, u,v).

It can be shown using alittle algebra that the LIS estimator can be written

Pﬂ?ﬂo (Y, u,v)

rALls(Y’/J:V;eo’el) = pF Y. ) .
00,0, y M

Now, thejoint distribution IT;, , (Y,z,v) of (Y,u,v) and Y"¥ simulated according to the
forward algorithm is ssimply

Pﬁl:ﬂl (Y, u,v)

%

Hgoﬂl (Y, u,v)
q, (YL Z,

](qeo (Y{9)/Z,, )=

Hence, if wetake Hgoﬂl (Y, u,v) to betheimportance distribution for drawing asample (Y, «,v)
we seethat f (Y, u,v;6,,0,) isan estimator of A(4,,6,) inthe sensethat

3 Poa, (Vs 26,v) By (Y, 11,v)
Engoﬁl {rLls(Y:ﬂ’V;Ho:Hl)}: Z = — =A(6,.,6,) -

Y,y Pez,gl (Y! Hs V) Zeo
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A.IL.8. Combining Importance sampling and auxiliary variable (LISA)

The question is now whether we can improve on the performance of SISA by getting a better
estimate of A(6*,6,) than the SISwith M = 1? There are afew aspects of the importance

samplers presented that prevents an immediate incorporation of them in the SISA. For example,
here A(0,6,) — A(6,6,) only as M gets large and we have to get an estimate in every iteration.

If the distributionsindexed by @ are closeto 6§, are separated there could be a severe bias or

infinite variance. As we have seen this can be remedied by introducing bridging distributions but
in general for the importance sampler, while for the Hastings ratio

EY|‘9* [HA ]: EY|€* qe*—(x)x(e-k19(t)) :%'*—()()A(e*,e(t)) :M
qe(!) (X) qg(t) (X) qg(t) (X)/Z‘g(t)

wetypicaly have that

Eype [F |2 By [ mint A .

Consequently, if we use importance samplers indiscriminately we may accept updates in the
Metropolis-Hastings with on average wrong probabilities.

A.ll.8.a LI1SA - extended state space

In SISA we performed draws from the joint distribution of the parameters and the auxiliary
variableY e 2. Consider now as an auxiliary variable (Y, u,v) €

HLQ?K x{L,...,K}x{L...,K} and adistribution TT} ,(Y,x,v) that depends on both ¢ and 6.

The linked importance sampler (LISA) MCMC is a Metropolis-Hastings algorithm that performs
draws from the joint distribution

7(Y, v, 01 X) =Tl o (Y, 11,v)7(0 | X)

P> (Y, u,
oc 901‘9( ﬂ V) q&(x) 7[(0)
Z, Z,

It is straightforward to show that 6 has the desired marginal distribution

> x(Y, u,v,0]X)=7(0]X).

Y, uv

The Hastings ratio still contains the ratio A(6*,6)

0, (X)/Z, P@?ﬂ*(Y*’ﬂ*’V*) g(e(k),Y(t),,u(t),V(t) | 6%, Y*, 1* v*) 7(6%)
4,00 (X)/Z,gw ngg(t) (Y(t)uu(t) 7V(t)) 9o, Y*, pu* v |9(k) 7Y(t):ﬂ(t):v(t)) ﬂ(e(k))

where we for now denote by g a generic proposal distribution. Assume now that we conditional
on @* propose
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Pef,eo (Y*, p* ,v*)
Z@*

(Y*, % v*) =g g (Y*, 1%, v*) =

theratio A(6*,0) cancel in H

0, ()12, PR (YRt ) H;mﬂo(Y(t),ﬂ“),v(‘))g(é’(k)|9*) 2(6%)
Ayio (X)/ Z9 P, o (YO, Vw0 TI, (Y, v*)g (0% |0%)  7(0™)
L 9,(X)/Z, Paf,a*(Y*!ﬂ*'V*) P;o,go(Y(t),ﬂ(t),V(t))/Ze<k>9(6’(k)|9*) 2(6%)
0,00 (X)/ Z ngﬂm (YO, 1O BL, (Y5, 15 V)] Z,.9(6%16%)  =(6Y)
9, (%) P2 o (Y*, 4%, v%) pe'(:!)’go(y(t)1ﬂ(t)1V(t))g(0(k) 16) 2(6%)
Gy (X) P g, (Y* 2% v*) PP o (Y O 1O v g(er|609) z(6™)

and furthermore, by the definition of (Y, x,v;6*%,6,)

R Poo (Y, 1,v)
fus(Y, 4,v;6%,6,) :9;'6*—
P s, (Y, u,v)
so that the Hastings ratio reduces to

_ Q- (X)) Ps (Y*, 1 ,v*16%,6,) g(e(k) |6%) =(6%)
0, (X) fus(Y(t)7ﬂ(t):V(t);9(t):6’o) g(6* |9(k)) ”(e(k)) ’

Note that SISA can be seen as aspecia case of LISA with K =1and m=1, i.e. when we only
produce the initial state Y"* and when we have no bridging states.

A.l1.8.b. LISA in summary

We have proposed an exact or ‘‘pure’’ Metropolis-Hastings algorithm for drawing paramters
from the posterior given data that follows a distribution with an intractable normalising constant.
The MCMCis‘‘pure’ aslong aswe are able to draw (an approximate) a sample point from our
data mode!.

The algorithm LISA is tunable having two constants K and m that may be set by the researcher to
tune the mixing of the Markov chain. Thisis anotable improvement on SISA, for which there
was very little scope for improving mixing. Since LISA employs bridging distributionsit is not
as sensitive to the choice of ¢, as SISA.

Although LISA may give the impression of being complicated to implement and require alot of
extra computational time as compared to SISA, LISA only requires sampling in the data space
using M-H and the evaluation of discrete variable probabilities. LISA only requires K x m extra
M-H updating step (for the auxiliary variable) as compared to SISA. Note that a procedure for
sampling in the data space is almost always required for the models considered here in order to
make any sort of inference.
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A.I1.9. Illustrations

In order to illustrate the performance of LISA, we compare LISA and SISA in inference for
simulated data from the Ising model as well as employ LISA to the inference for models and data
with more elaborate interdependence structure.

The Ising model isused for illustration since it isawell known model that is reasonably well
understood. In addition, since the Ising model was used for illustration in Mgller et al. (2005) it
makes for an intuitive point of departure. Having established that LISA compares favourably
with SISA in the case of the Ising model we proceed to investigate its performance for models
with more intricate dependence structure. The socia influence model proposed by Robins, et al.
(2001) is very similar to the Ising model but the dependence structure is more complicated and
less regular. Because of this the influence of auxiliary distribution and the choice of K and mon
the mixing of LISA are more accentuated in the case of the socia influence model. Finally, we
shall illustrate the algorithm for inference for the (Curved) exponential family of distributions.

All.9a Ising model on 50x50 grid
A classic case of an autologistic model isthe Ising model (Besag, 1972; Cressie, 1993). It is
assumed that you have points on grid with binary marks. The Ising model on abinary mx n
| attice has been used to model how the charges of particlesinteract an in the ssimplest caseitis
assumed that the particles can have either of two spins, up or down. The spin of a given particle
depends on the general tendency towards spin up and the spins of its neighbours on the lattice.
We define the model for X = (x; :i=1,...,m,and, j =1,...,n), where for the elements

x; € {-11}. The pmf is defined asin (E-1) with

dy (X) = exp(eovo + 91\/1) )

where
m n m-1 n m n-1
Vo = ;;Xﬁ ,and V, = ;;Xijx(iﬂ)j +iz_1:jz_;xijxi(j+1) .

When generating data according to the model we have to rely on MCMC since thereis no direct
way drawing data from an Ising model. In the case of some autologistic models (and the Ising
model in particular), it is possible to *‘ sample perfectly’” from the model, to take as an output a
state that we know have been produced after the Markov chain has converged to the target
distribution. Here we have used Wilson's (2000) modification to the Propp and Wilson (1996)
algorithm.

A redlisation for a50x50 lattice with @ = (0,0.3)" isgivenin Figure 7.
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Figure 7 A realisation for an Ising model on a binary 50x50 latticewith @ = (0,0.3)" . ** Spin-ups’ are
indicated by dots.

Toillustrate how the chains Y ..., Y ) are connected for j =1,...,m, we have plotted the
sufficient statistics V,, and V, for m= 5 chainsin Figure 8. In the right-hand panel we see that
6(1) and 6(5) produce radically different numbers of same-site (V,) pairs. The bridging
distributions make it possible for the sampler to incorporate values of V, that are probable under
A(5) but highly unlikely under 6(1) . The starting point Y™ is generated (using the Prop
Wilson algorithm) from an Ising model defined by € = (0,0.3)" . For the right hand panel,

showing the traces of (V,), we expect the chains to progressively move downwards since the
parameter 4(1) corresponding to the number of same spinn sitesis gradually lowered. The state

connecting the first chain with the second is Y%= with V,=1716. This state is then set as the
starting state Y2, in the second chain etc until the last chainis started in Y=~ whose

V,=1450 is considerably lower than the overall level of the number of same spinn sitesin the

first chains. Thus the bridging chains have managed to link the supports of the two extreme
distributions defined by ¢(1) and (5).
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Figure 8 A linked importance sample for an Ising model on a binary 50x50 latticewhere 8(1) = (0,0.3)"
and 8(5) = (0.1,0.2)" . Circles mark the linking states.

Since 1 (Y, 1, v;6*,6,) haslower variance than the SIS estimate, we expect the variation in
LISA to be smaller than in SISA. Additionally, since SIS is biased when the proposed parameter
valueisfar from 6,, we expect SISA to get stuck in bad estimates of the ratio of normalising
constants A(*,6,) occasionally. When these two issues combine we expect them to manifest
themselvesin alow acceptance rate and hence large sample autocorrelations even for big lags.

To investigate differences in performance we simulated data using @ = (0.2,0.1)" and

0 =(0,0.3)" and binary 50x50 lattice. In Table 1 some summaries for LISA with different
choice K and mare given. In al algorithms the MPLESs have been used as 6, . Increasing K and
m drastically reduces the sample autocorrelations of the Markov chain. The lag 50/100 SACF
efficiency is ameasure of the gain in efficiency scaled by the number of extraiterations required
to calculate the LIS estimate. Note that thisis conservative in favour of SISA since one

Metropolis-Hastings updating step in the LIS algorithm corresponds to one function evaluation
(the change in sufficient statistics as one element is change into its oposite) but one iteration in

the burn-in phase required in the perfect sampling scheme for drawing Y, requires 5 function

evaluations (the maximal and minimal chain in the main chain and the criterion chain
respectively plus the update of the present state). The number of extreme proposals as judged by
Prop. min(1,H) < €™ deserves closer attention. This reflects, not that some proposed parameter
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values hade a very low posterior probability, rather it reflects the bias and variation of the SISin

SISA. In the applications to come low acceptance probabilities sometimes cause the SISA to

become stuck in some states for along time.

K=1 K = 3000 K =7000

m=1 m=5 m=9

6,. 6. 6,. 6. 6,. 6.
True 0.2 0.1 0.2 0.1 0.2 0.1
MPLE. 0.196 | 0.109 0.196 0.109 0.196 0.109
Proposal std 0.005 | 0.005 0.005 0.005 0.005 0.005
Posterior mean | 0.2006 | 0.1053 0.1994 0.1054 0.1994 0.1051
Posterior std 0.0214 | 0.0142 0.0217 0.0144 0.0221 0.0149
Lag 50 SACF 0.6464 | 0.5124 0.5262 0.3619 0.4596 0.3126
Lag 100 SACF | 0.4336 | 0.3288 0.2923 0.1945 0.2011 0.1088
Mean acc. prob | 0.3931 0.5890 0.7249
Prop. min(1,H) | 0.0178 0.0006 0.0000
< e—lO
Ave. iter 5.6x10" 5.6x10" 5.6x10"
Lag 50 SACF 1 1 1.0558 1.0310 0.7185 0.6627
efficiency
Lag 100SACF |1 1 0.9844 0.9455 0.6631 0.6241
efficiency

Table 1 Comparison of performance for different choicesof K and min L1SA for estimating parametersfor
thelsing model (Lag 50/100 efficiency is 1-SACF/(Ave.iter+Km) relativeto K =1 and m =1)

In Figure 9 the autocorrel ations of the entire MCMC samples for SISA and LISA (K = 3000, m=

5 and K = 7000, m = 9) are compared. The increase in efficiency when K = 3000 and m=5, as

compared to SISA is substantia but the marginal increase when we increase K to 7000 and mto

9issmaller.
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Figure 9 Comparing the sample autocorrelation functions (SACF) for SISA and L1SA(dashed K = 3000, m
=5; dotted K = 7000, m = 9) for data ssmulated from an Ising model on a binary 50x50 lattice with

0=(0201)".

A.ll.9.b. The social influence model

When studying for example binary educational outcomesit is common to take interdependence
between response variables as a consequence of respondents sharing teachers, schools, etc, into
account using random effects. Many researchers have however pointed to the importance of
taking peer influence into account. Robins, et al. (2001) proposed a model that uses the
empirically collected interaction structure to model how outcomes for (for example) pupils may
depend on the outcomes for their friends. There are some obvious similarities to Ising but the
interdependence structure is given by empirical observations, not homogeneous and usually quite
complicated.

For aset of actors N ={1,...,n} , welet the binarised masculinity variable (O=gender equity
attitudes, 1=male dominance attitudes; for description of data and substantive motivation see
Lusher, 2006) be the response variable X = (x),_, in amodel for which the pmf is defined asin
(E-1) with

q,(X) =exp{6'12>ﬁ +6, D XYy +0, DD XX, +Z7)9k2x4k3}

ieN jeNieN jeNieN k=4 ieN

where z; isabinary covariate capturing whether actor i belongs to the dominant culture
(1=dominant Anglo-Australian ethno-cultural background; O=marginal ethno-cultural
background); z isthe SES of actor i based on postcode (here standardised); zs is fathers's
occupational status of actor i (standardised); ); z4 is mother's occupational status of actor i
(standardised); x; is1if either i nominatesj as afriend or j nominatesi as afriend.
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Trace plots for the parametersin this model are given in Figure 10 and summaries and
comparisons with the MLEs and MPLEs are given in Table 2. The importance of the choice of

6, and K and misvisiblein how freely the (3 first) parameters move in the state space varies. It

is clear from the marginal histograms that the sasmple using MPLE, K =1 and m=1 is not very
useful. AsK and mincrease, the mixing gradually improves and for K = 2000 and m= 7 the
chain moves well in the state space (possibly with the exception of arun around iteration
40,000). When the MLE is used in the auxiliary distribution there is a marked improvement for
al algorithms but SISA displays the characteristic ‘‘freezing'’ - SISA seemsto be mixing
perfectly well for the first 20,000 or so iterations, after which it gets stuck for more than 50,000
iterations.

For the influence moddl, it is not straightforward to construct a monotonic chain such that we
may implement a perfect sampling scheme. Instead we have relied on the rule of thumb 100n for
the length of the burn asis suggested by Snijders (2002). A number of post-hoc tests (based on
simulation in the data space with relatively *‘extreme’” values of &) confirm that thisburninis
sufficient.

MPLE MLE

0.4
0.2
0 0
2 2| o4k —=asal o, : —04l__-0al g, 0.2
InPerce%t io A%tivitg io antagl‘:fon %‘O In?erce‘?)t io A%tivit)? io antag?on io
x 10 x 10 x 10 x 10 x 10 x10

Figure 10 Comparing effect of choice of auxiliary distribution and tuning parametersin L1SA: Trace plots
(and histograms) for 3 of the parametersin an influence model fitted to L usher's (2006) 106 school data when
auxiliary distribution in L1SA uses M PLE (left hand panels; value indicated by solid line and approximate 95
confidence interval by dashed lines) and M LE (right hand panels; value indicated by solid line).
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The (approximate) confidence interval for &, and &, given by the pseudo likelihood analysis and

maximum likelihood suggests that the corresponding two effects are significant. The (exact)
Bayesian analysis is however less conclusive (activity does not seem to have an effect) but still

lending some support to contagion: the posterior probability that &, >0 given data, i.e. that there

isacontagion effect, is 0.9932. No contaigion effect is not includced in the 95 highest posterior
density region (95 HPD) but in the 99 HPD. Point estimates and measure of uncertainty are very
similar for the ML approach and the Bayesian approach and the differences are largely to be
attributed to the skewness of the posteriors.

MPLE MCMCMLE Posterior
EST SE EST SE MEAN STD 95 HPD 99 HPD
Intercept 6, 011 059 0.12 0504 0.14 056 -115 145 -142 181
0
Activity 0, -0.24 0083 -0.13 0046 -0.11 005 -023 0.02 -026 0.06
5
Contagion 4, 045 0.123 0.29 0.067 0.24 0.08 0.04 042 -0.03 047
2
Dominant 0, -0.03 0472 -039 0427 -044 045 -144 057 -1.74 082
culture 1
SES A 0.10 0.227 0.20 0.215 0.23 022 -027 0.72 -038 0.83
3
Dad A -0.16 0220 -0.17 0.210 -0.19 021 -069 030 -083 042
9
Mum 6, -0.05 0224 0.08 0.206 0.08 021 -041 057 -054 071
5

Table 2 Point estimates for influence model fitted to Lusher's (2006) 106 school data

A.ll.9.c. An ERGM

While the interaction pattern of the sitesin an Ising model is described by a binary m x n lattice,
that isaregular graph (with a difference in the degrees of boundary vertices), which implies
certain convenient conditional independencies, there are models that have a much more
complicated dependence structure. An example of thisisthe exponentia family random graph
(ERGM) distributions for socia networks introduced by Frank and Strauss (1986) and further
extended in for example : Pattison & Wasserman (1999); Robins, Pattison, and Wasserman
(1999); Wasserman & Pattison (1996); Snijderset al. (in press).

We begin by fitting a special case of an ERGM where we model a collaboration network on a set
of 36 actors. We let the set of actors be represented by aset N ={1,...,n} of verticesand let the

colaboration network be represented by a random edge set on N with adjacency matrix X, the
elements of which are

_ |1 if actori collaborates with actor j
%o otherwise '

We assume that it is not meaningful to speak of actors collaborating with themselves wherefore
the main diagonal is all zeros. The pmf is defined asin (E-1) with
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0, (X)=exp(d_, 6.2,(X)),

where the z"s are functions of the adjacency matrix and a set of fixed vertex leve attributes. In
this particular example we follow the specification in Hunter and Handcock (2005) and for the
attributes g; (seniority of actor i interms of rank), b; (binary indicator of role of actor i), ¢ (sex of
actor i), d; (office location of actor i), (for more details about the model and the data set see e.g.
Lazega, 2001; Lazega and Pattison, 1999; and Snijderset a., in press):

k  Effect z.(X)
1 Activity/popularity 2%

i<j
2 Main effect of seniority 2% (@ +a)

i<j

3 Main effect of practice 2% (B +b)

i<j

4 Homophily practice Z X 1(0 =)
i<j

5 Homophily sex Z ¥1(¢ =¢))
i<j

6 Homophily office 2% 1(d =d))

i<j
Here 1 denotes the indicator function.
The sociogram of the datais depicted in Figure 11.

Collaboration network among 36 lawyers in a
New England law firm (Lazega, 2001)

Boston office:
Hartford office: i W
Providence off.: G,

least senior: O

most senior: ‘

Figure 11 Lazega'slawyers

Since the edges are conditionally independent conditional on the attributes and parameters, it is
easy calculate the normalising constant analytically as

z, =TT+ o>’ 0.z %) - 2.0 |

i<j
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for this model. In this expession X isthe adjacency matrix that isidentical to X for all
elements but may differ in (i, j) that isset to 1. Analogously X; isthe adjacency matrix that is
identical to X for al elements but may differin (i, j) that issetto 0.
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Figure 12 Trace plotsfor (from left to right, top to bottom) SISA, LISA(K = 1000, m =5), LISA(K = 1000, m =
10) for a dyad independent ERGM fittend to Lazega's (2001) New England L awyer s collabor ation network.

Asseen in Figure 12 the mixing improves markedly with LISA (here we will include a table with

estimates, SACF, etc). What is more interesting is that since can evaluate the normalising
constant analytically, we are able to study the biasin SISA stemming from the biasedness of SIS.
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Figure 13 Distribution of biasfor SISA, LI1SA(K = 1000, m =5), and L1SA(K = 1000, m = 10) for a dyad
independent ERGM fittend to Lazega's (2001) New England L awyers collaboration network.

Figure 13 isan illustration of the difference between the true A(6*,6,) and that estimated by

SIS and LIS. The distributions are those of log A(6*,6,)/ A(6*,6,) under the marginal
distribution of 6*

jg(e* 16)7(6|X)d6 .

The worrying feature about SISA is the difference often is extremely small, meaning that in this
particular example theratio A(*,6,) isunderestimated. When a 6* is accepted by SISA

because A(*,6,) isunderestimated iswhen the algorithm gets stuck.

A.l1.9.d. A CERGM
We now proceed to show how LISA performs when we increase the complexity of the
dependence structure on data. Following Hunter and Handcock (2005) we introduce the
geometrically weighted shared partner statistic (GWEPS), which was derived as the alternating
triangle statistic

30025 o (2 ezB)

from the partial dependence assumption by Snijderset a., (in press). When A4 inthe alternating
triangle statistic is allowed to be a free parameter the model containing both GWEPS and
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6, =1og A belongs to the curved exponential family of distributions. The results for fitting the

model to Lazega's (2001) New England Lawyers collaboration network using LISA are
illustrated in Figure 14. The visual impression is one of good mixing.
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Figure 14 Trace plotswith histograms for a model with GWEPS fitted to L azega's (2001) New England
Lawyers collaboration network with L1SA(K = 2000, m = 7)

A.lll.  Bayesian analysis of (curved) exponential family distributions for
graph

We consider here a probability model for the edge set of a graph that is commonly referred to as
the exponential random graph model (ERGM), and its extension, the curved ERGM. Although
some issues remains to be resolved when it comes to how to specify the ERGM, this class of
models holds some promise when it comes to capturing network processes. Currently the
favoured methods for statistical inference are Markov chain Monte Carlo (MCMC) Maximum
likelihood estimate (MLE) and an MCM C implementation of the Robbins-Monroe a gorithm,
both of which rely on the properties of the method of moments for exponential family
distributions. We propose instead to take a Bayesian approach that (i) yields clearly defined
answers in terms of probabilities (the asymptotic properties of the MLE are not fully understood
in the case of the ERGM); (ii) offers arich picture of uncertainty (the MLEs and approx. s.e.'s do
not adequately reflect the uncertainty stemming from the pronounced dependencies between
observations); (iii) makes allowances for penalising "degenerate parts' of the parameter space
using proper subjective prior distributions; (iv) provides us with a natural and probabilistic
approach for handling missing data; (v) offers a principled and probabilistic procedure for
performing model selection; (vi) provides us with posterior predictive distributions; etc. How to
implement a Bayesian inference scheme for the ERGM is, however, far from straightforward.
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Itisclear that in all but trivial cases we have to rely on numerical methods. It is probably fair to
say that asfar as numerical methods go, MCMC isthe gold standard. Thus far, however, efforts
at designing an MCMC algorithm for the ERGM has been hampered by the fact that it is
typically not possible to evaluate the normalising constant (the partition function) in the
likelihood function. Although the (pure) MCMC does not require that we can evaluate the
normalising constant in the posterior distribution it usually requires that we can evaluate the
likelihood function. Recently an auxiliary variable MCMC (SISA; our acronym) was proposed
that circumvented the need to evaluate the partition function. The key being to introduce an
auxiliary variable defined on the same state space as data. However, while SISA performs
sufficiently well in order for it to be useful for "simpler" models like the Ising model, it seems as
if it runsinto serious problems when applied to the ERGM. It is not only a question of whether
the mixing is good or not, rather it is aquestion of whether it mixes at all. The reasons for this
being so are easily understood when the SISA is understood in terms of the Simple Importance
Sampler (SIS). We propose a solution (LISA) where the (single) auxiliary variableis replaced by
an auxiliary variable defined on an extended state space. Whereas SISA may be seen as an
algorithm that performs a one-sample point SIS in each iteration of the Metropolis-Hastings
sampler, LISA performs a bridged (linked) importance sampling (L1S) estimation in each
iteration, with the number of bridging distributions and sample points chosen to tune mixing.
The extra number of calculations necessary to perform LISA as compared to the SISA is
negligible. We illustrate LISA when applied to the analysis of the Ising on a 50x50 grid and a
network for a New England law firm.

A.IIIL.1. Scope of the paper

This paper will use the results on LISA in Koskinen (2006; and paper outlined in previous
section) and present them to in aless technical way with an emphasis on the application to social
network analysis. We will go into more detail regarding specific research issues that arisein
socia network analysis and in particular when exponential and curved exponentia family
distributions are fitted to sociometric data. Much effort will be put on interpretation of results
and in doing this we will treat in some detail posterior predictive distributions in order to
interpret models in terms of observables. This approach also extends the alternative goodness of
fit that is proposed in Koskinen et a. (2007b).

A.IIIL.2. Comparison of different approaches

Alll.2a An MCMC importance sampler

Koskinen, (2004a) proposes to use a Bayesian version of the MCM C scheme of Geyer and
Thompson (1992). For multivariate ERGMs, K oskinen and Robins (2007) suggested asimilar

approach. For drawing asample 09 ,...,0" ....0") with "non-informative" prior n(@)=1, from
the posterior distribution

exp[ﬂTz(X)]
Zexp[OTz(U)J '

Ue

7(0]X) ¢ p(X [0)7(8) =

they used the Metropolis-Hastings sampler suggested for inference for exponential random
graphs in Koskinen (2004a) but with an alternative method for calculating the Hastings ratio in
the updating steps for the parameters. Similar to the Maximum likelihood inference schemes
suggested in Geyer and Thompson (1992) as applied to exponential random graphs (and curved
exponential family models for networks, Hunter and Handcock, 2006), a single importance
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sample Yy,..., Yy isdrawn from an exponential random graph model conditional on a provisional
point estimate 6y, that is used for approximating the Hastings ratio

> expl0” -0,)"2(Y,)]

S expl(0*—0,)"z(Y,)]
L explo*T z(0)] 20 oo 2| [T, excr 2]
expp" z(x)| ., Posz(V)] |/ | X, explosz(V))]

_ 7(8*]X)
20 |X)’

exp(@* —0)"2(X)]

where the equality = holdsin the limit as N gets large (given some regularity conditions and
caveats, Handcock, 2003). The importance sampler parameter 6o may have to be updated afew
times and the al gorithm repeated with the updated value of 0. An aternative approach is
suggested in Berthelsen and Maller (2003) where estimates of the normalising constant for
different parameter values on agrid are used in the Metropolis-Hastings. This does however
require that the grid points are chosen beforehand which could prove tricky when the number of
parametersis large.

In Table 3 three models with varying degrees of interdependence are fitted to the marriage and
business networks of Padgett’s (Padgett and Ansell, 1993) 15'th century Florentine families
(multirelational stars with parameters oy, o4 and o corresponds to the structures b, d and c in
Figure 15 respectively and analogously for triangles e and f; Marriage ties and Business ties
taking the role of dashed and full lines respectively)

0 9 ®

@ SO\
——- d_\o
© "

Figure 15 Some multirelational graph statistics
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Conditiona Multivariatedyad Multivariate higher

order
Opyes  SPO) O,  SD(O) Opayes SD(6)
Edges business, 6, -3.69 0.581 -3.31 0.673 -4.37 1.020
Alt. tri business, 0, 0.87 0.298 0.68 0.361 1.42 0.535
Edges marriage, 03 -2.03 0.450 -2.18 0.532
Alt. tri marriage, 62 -0.11 0.299 -0.003 0.353
() Edgesmt 2.32 0.655 2.05 0.738 3.01 0.880
Stars op 0.17 0.235
Stars og -0.05 0.073
Stars o, -0.04 0.081
Triangles te -0.63 0.722
Triangles T -0.08 0.666

Table 3 Summaries of posterior distributions of parametersin the ERGM sfitted to the business and
marriage networ ks of Padgett's Florentine families. The lables (b) through (f) refer to respective subgraph
counts of Figure 3. Point estimates arethe M CM C estimator s of the posterior expected value of the
corresponding parameter given data.

The appropriateness of this approximation to the posterior distribution is something that arguable
has to be decided on a case to case basis. We have seen in the treatment of LISA that the choice
of importance distribution for ERGMs may have alarge impact on the estimate of the estimated
value of the likelihood function.

A.lll.2.b. L aplace approximation
Koskinen, Wang, Lusher, and Robbins (2007) approximate the posterior distribution by a
multivariate normal distribution 8 | X = N_(8,,.c,!(8,,c) ™), where the MLE and information

matrix are readily available from standard SNA computational packages. The chief aim of the
approximation was to supply a quick and easy procedure for drawing adjacency matrices from
the (approximate) posterior predictive distribution (to be used for goodness of fit).

Some preliminary results suggest that the normal approximation might not be bad contrary to
what one would expect from the high degree of interdependency and the dichotomous data (c.p.
Hauck and Donner, 1977; Z€ellner. and Rossi, 1984). However, there are instances when the
departure from normality may be small (in, say, covariance norm) but have great impact on the
properties of the distribution. One property of the distribution that lends itself to intuitive
interpretation isin terms of the posterior predictive distribution and, more particularly, the types
of graphs that the distribution produces. In the left hand panel of Figure 16 the probability of a
degenerate graph (Handcock, 2003) is plotted as a function of the edge parameter and the
alternating k-triangle parameter for a network with 7 nodes. It is clear that thereisa ' ‘ stable’”’
region in the parameter space roughly centred over the origin. The two right hand panels of
Figure 16 superimpose the approximate and exact posterior on the picture of degeneracy for two
different realisations of the sufficient statistics. The departure from normality (in both cases) that
causes problemsisthe ‘‘tongue’’ that protrudes from the lower right hand parts of the contours -
whereas the exact posterior is mostly contained within the non-degenerate region, the ‘‘tongue’’
extends into the degenerate region. Thisis most visible in the bottom panel.
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Figure 16 Degener ate edges and k-triangle graphsfor 7 nodes. Probability of degenerate graph asa function
of parameters (left panel); with superimposed posterior distribution (solid) and approximate posterior
distribution (--) given 11 edges and 11.25 k-triangels (A=2) (top right); with superimposed posterior
distribution (solid) and approximate posterior distribution (--) given 11 edges and 15.5 k-triangels (A=2)
(bottom right) (Figurereproduced from Koskinen, Wang, Lusher, and Robbins, 2007).

Asin the case of the MCM C importance sampler approximation, the appropriateness of the
approximation is hard to establish on ageneral basis. In any case, in order to evaluate the
approximations we need an exact inference scheme as our criterion.

A.IIL.3. The work-around non-convergence of MH for ERGMs
Many authors have testified to the difficulty of sampling graphs from exponential family of
distributions for graphs (c.f. Snijders, 2002; Handcock, 2003). When implementing L1SA,
however, we assume that we may produce and unbiased draw Y** of from an arbitrary ERGM.

Typically the rule of thumb 100n? (Snijders, 2002) is a sufficiently long burnin time for a
Metropolis-Hastings sampler to ‘*converge'’. For certain parameterisations and parameter values
the MH may take very loch to settle and hence the produced Y."¥ may depend heavily on the
choice of the initial state. An intuitive way of studying the time to convergence is by inspecting
trace plots with parallel chains with overdispersed initial states. Using thislogic, an
approximately, or a pseudo, perfect sampling scheme may be implemented for ERGMs. The
basic ingredients are the same as in Wilson's (2000) modification to the Propp and Wilson (1996)
algorithm with the primary difference being that the stopping rules are based on approximate
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coalescence of chains projected onto the space of sufficient statistics instead of exact coal escence
of states. A brief illustration of this approximate coalescenceis given in Figure 17. For 4
different models with varying degrees of dependency are depicted the 6 dyadic statistics of the
model fitted to Lazega's collaboration network as well as the # edge-wise shared partners 1
through 14. The interpretation is that when the 3 chains have **merged’’ then we know that we
could have started in any state in-between (used here in aloose sense) and we still would have
produced avery similar graph. To get rid of the bias induced by the deterministic stopping rule
(approximate coal escence) we need to run 2 independent copies of the (approximately) coupled
chains aswell as do severa restarts (departures from Perfect ssmulation are not treated here).
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Figure 17 Approximate perfect sampling of (C)ERGM : 4 realisations of approximately coupled processes
with different parameter valuesfor HH specification for Lazega's collabor ation networ k
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A.lV.  Fitting modelsto social networkswith missing data

Here we assume that we have data of the type illustrated in Figure 18, i.e. we have one or several
dyads for which we have no information as to whether an edge is present or not.

Figure 18 Observed network with missing infor mation for dyad {k,|}

The elements of the adjacency matrix X thus are

1 if actori relatesto actor |
%, =40 if actori doenot relateto actor j .
? otherwise

In the following we only treat missing data models for graphs explicitly but the extension to
directed graphsis straightforward.

Previous work on missing datain SNA has primarily focused on missing edge indicators
stemming from non-respondents. The seriousness of the issue was acknowledged by Stork and
Richards (1992) but they only offered an ad hoc solution (for digraphs), “ complementation” of
data, which has some obvious shortcomings. The impact of non-respondents has received some
attention, largely concerned with the impact of missing data on various indices (Kossinets, 2006;
Costenbader & Valente, 2003; & Huisman, 2007). Principled approaches are thus far relatively
scarce with Robins et al. (2004) treating non-respondents as a special breed of actors and Gile
and Handcock (2006) using the missing data principle, both of which in the ERGM framework.

AIV.1 The missing data structure and ERGM

Assume that we for the compl ete data (i.e. assuming that we have no missing information) have
an adjacency matrix X, taking valuesin 2. The model is assumed to be indexed by ap x 1

vector 0 e @R of real-valued parameters and that a model may be written with a probability
mass function (pmf) of the form

PIX16) = 6,(X) , €2

0

where q,(X) isareal vector valued function of both the parameter vector and the variable X,
and

Z,= ).9,(V)

Ueaww
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isthe normalising constant that is only a function of the parameter vector 0. Furthermore, for the
exponential random graph model (ERGM) the pmf is defined asin (E-2) with

a,(X)=exp(>_" 6,2,(X)),

where the zs are functions of the adjacency matrix and a set of fixed vertex level attributes. For
the simplest form of missing data mechanism we assume that edge indicators are missing
independently at random. We introduce the missing data indicators

1 if x;isobserved
7710 if x;ismissing ’

and throughout we assume that we can factor the joint distribution of &= (&;;1<i < j<n) and X

P(X,&10) = P(X|0)P(S).

iid.
Initially we also assumethat &, ~ Bern() for 1<i < j <n but this can relatively easy be
elaborated on. A convenient yet flexible way of incorporating exogenous information
about what edge indicators are missing is through e.g. alogistic regression on &.

When we are not interested in studying the missing data mechanisms per se, since the
inclusion variables & are observed and therefore fixed throughout the estimation process,

we define the inference procedure conditional on &. Hence, given & we define a partition

of datainto an observed fixed part U and alatent unobserved part V. For notational
convenience let it be understood from the context that the structure on U and V is retained
and unambiguous.

Missing data is straightforwardly handled in the Bayesian framework using the principle
of data augmentation (Tanner and Wong, 1987). This consist of setting up a Markov chain
Monte Carlo (MCMC) sampler that samples from the joint posterior of the missing data and the
parameters given observed data by alternating between performing draws from

(a) Thefully conditional posterior of the parameters given data and a realisation of
the missing data

(b) The fully conditional posterior of the missing data given data and arealisation
of the parameters

A.IV.2. The fully conditional posterior distribution of the parameters
given Uand V

Given aredisation of the complete data X = (U, V), and aprior distribution z(8) , the posterior
distribution of 6 given the we have observed data X, is given by
PX|9)x(0) 1

(0] X) =WOCZ—%(X)7T(9):

39



where
m(x) = [ 54, (X)7(0) 40

isthe marginal likelihood. In Koskinen (2006; and above) it was shown how a Metropolis-
Hastings (MH) algorithm, LISA, can be used to produce an MCMC sample (8%),' , from the
posterior distribution that can be used for exploring the posterior distribution.

A.IV.3. The fully conditional posterior distribution of V given the
parameters and U
Using Bayes theorem we can write the fully conditional posterior distribution of V given
the parameters and U as

P(V,U|0)

Sl SETAVIT)

«q,(V,U).

Now label the elementsin V using theindex set 3. In order to further simplify the
MCMC we may now use the property of the Metropolis-Hastings sampler that in order to
draw V we may draw elements v, sequentially from their respective fully conditional

posteriorsfor ie 3

P(X10)

(v [U, (v)) P(X|0)+P(AX|6)’

0) =

o
jel

where 3. ={je3J:j=i},X=(U,V)and A X isthematrix X inwhich v, has been set to
1-v.. Now let the change statistic §,X = z(A, X) — z(X) and

1

T1+P(AX|0)/P(X|6) Lrep@aX)} . (E:3

(v |U!(Vj)je$§,‘ &)

We may note that (E-3) is exactly the quantity we use when we use the nearest neighbour
Metropolis-Hastings algorithm for drawing graphs according to ERGM. In other words
the missing data algorithm can be summarised circling through the steps
(a) draw a parameter vector from the posterior using one step of LISA and
the complete data X = (U, V)
(b) for each of the elementsin i € 3, use (E-3) to perform a single Metropolis-
Hastings updating step

A.IV 4. The simple case of the Bernoulli graph

For the Bernoulli(0) graph the edges indicators are all identically independent Bernoulli trials,
each with the probability of success (edge present) 6. The model may hence be written
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P(X|6) = 6”(1- )"

where y= Z X; isthe density of the graph. With a conjugate Beta prior distribution for 6,

i<j
7(0) o« 63 (1-0)"*, the posterior of 6 given complete data X = (U, V) is hence
0| X ~Beta(y + a,n+b-y). When drawing the missing edges we may note that since the edges
are independent by assumption, the only information regarding the values of the missing edge
indicators provided by datais that which is mediated through the parameter. More succinctly put,
if we have alot of edgesin the observed portion of data, the draw from the full conditional
posterior of 6 islikely to have produces alarge vaue. If the value of 6 is large the probability

that the missing edge indicator is a success (1) islarge. The MCMC circles through the steps (a)
through (b.K):

@ 7(0]X) o 07 (1- )"
(b1) 7%, 1U.(v)) ez, 0) =7(, |0) = 0" (1-0) "

e
jel

(0K) 7, 1U, ()5 0) = (v, 16) = 0" (1-0)""

o
jel

where K = 3J].

A.IV.5. Illustration of the general case

The principle of the missing data algorithm isillustrated in Figure 19. We have data of the kind
in the left of the picture, where thereisadyad {k,I} for which we have no information regarding
the status of the corresponding edge. In principle either of two scenarios are true, either thereis
an edge between k and |, or there isn't. Each of these scenarios gives two different conditional
posteriors, represented by the red and the blue curve respectively. The repeated draws of
different scenarios in the MCM C assures the red and blue curve are mixed with proportions that
are in proportion to the likelihood (actually probability) of their respective scenarios.
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SR
Figure 19 The principle of the missing data algorithm for social networks
In the course of fitting the ERGM to data we are also given probabilities for different true
structures, in fact we are giving awhole distribution of realisations of the part of the graph that is
missing. This distribution can be summarised by for example a graph with weighted edges - a
weight of 1 isassigned to an edge that is certain or observed, avalue closeto O indicates a highly
unlikely edge or and observed absence of an edge. It is however important to recall that we have
made quite simplistic assumptions regarding the missing data mechanism and hence this
algorithm should be used for *‘ coping’’ with missing data and performing inference for the
model when faced with missing data rather than inferring the missing data intself.

A.IV.6. Illustration using an empirical data set

We fit an ERGM where we model a collaboration network on a set of 36 actors (Lazega, 2001).
We let the set of actors be represented by aset N ={1,...,n} of verticesand let the colaboration

network be represented by a random edge set on N with adjacency matrix X, the elements of
which are

|1 if actori collaborates with actor j
%70 otherwise '

In this particular example we follow the specification in Hunter and Handcock (2005) and for the
attributes g; (seniority of actor i in terms of rank), b; (binary indicator of role of actor i), ¢; (sex of
actor i), d; (office location of actor i), (for more details about the model and the data set see e.g.
Lazega, 2001; Lazega and Pattison, 1999; and Snijders et al., in press):
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k  Effect z.(X)
1 Activity/popularity 2%

i<j

2 Main effect of seniority 2% (@ +a)

i<j

3 Main effect of practice 2% (0 +Db)

i<j

4 Homophily practice Z X 1(0 =Dy)
i<j

5 Homophily sex Z X 1(C =¢;)
i<j

6 Homophily office 2 %d =d))

i<j
Here 1 denotes the indicator function. Following Hunter and Handcock (2005) we introduce the
geometrically weighted shared partner statistic (GWEPS) which was derived as the alternating
triangle statistic

(X)

ﬂ«l

n-3 tn—2 (X)
/1“—3

B,(X) 2 4+ (D)

from the partial dependence assumption by Snijderset a., (in press). When A4 in the alternating
triangle statistic is allowed to be a free parameter the model containing both GWEPS and

6, =1og A belongs to the curved exponentia family of distributions.

Now, let us pretend that observations are missing for different hypothetical scenarios for missing
data.

A

B:{1,2} {17,26}

C: {1} xN\{1}, {2} xN \{2}.

D: {1}xN\{1}, {2} xN\{ 2}, {3} xN \{ 3}, {4} xN \{ 4}
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Figure 20 Density estimates for parametersisa model with GWEPS fitted to Lazega's (2001) New England
Lawyers collabor ation network with L1SA(K = 2000, m = 7). Missing data scenario is A for solid line, C for

red dotted line, D for black dashed line

For the dyadic parameters we should not expect much change other than the increase uncertainty
associated with the loss of precision stemming from the reduction of the number of observations.
On the whole the only noticeable difference is for the posterior of the shared partner parameter,

@, , where the removal of data has increased the amount of uncertainty.
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Figure 21 Posterior predictivedistributionsfor missing edge indicators



The posterior predictive distributions for the missing edge indicators ought to give us a general
idea of whether the missing data mechanism and the augmentation scheme manages to plausible
capture basic features of the data. The trace plots for the missing edge indicators in scenario B
are givein Figure 21. Looking back to e.g. Figure 11 we know that x; » should be 0 and x;7,26
should be 1. Whereas the algorithm seems to pick up on the former the latter, at first, appears to
be less convincing. When interpreting these results one has, however, to keep in mind that the
overall density isfairly low in the data set and thus, given no other information, our best guess
for amissing edge indicator would always be 0. Accordingly, a posterior predictive probability
that an edgeis present of around .5 isfairly strong evidence. In some instances the evidenceis
even stronger. When 10 dyads are removed at random and the missing data algorithm is run, one
of the dyads { 28,35} stands out as evidenced in the right hand side of Figure 21. There seemsto
be very strong evidence for the corresponding ties to be present. Looking again at Figure 21 we
see that 28 and 35 are two senior people in the same office who are situated in a dense and
highly triangulated and clustered part of the network.

Making these remarks regarding the ability of recovering missing data we do have to keep in
mind that this approach is primarily designed to facilitate estimation of structural properties of a
network in the face of missing data and not designed to predict missing values.

A.lV.6.a I mprovement on naive, available observations approach

Asillustrated in A.l.1, a subgraph of an ERGM need not necessarily be an ERGM. From a
modelling perspective, the data augmentation scheme outlined above is to be preferred to an
analysis that only uses the available, what way be termed the naive approach (c.p. c.f.
‘‘available-case’’ analysis, Little and Rubin, 1987, sec. 3.3). For Markov graphs we know that
we introduce non-Markov dependencies when information is removed. For other types of
dependence structures the marginal dependence structures probably requires a bit more work. In
the case of the exercises above, the difference between the principled approach and the naiv
approach turned out to be fairly small. There are several possible explanations. One of these
might be that when all the covariate effects are taken into account then the remaining
interdependence between dyads is not strong enough to distort the dependence structure to such
an extent that it is visible as a difference between the naive and the principled approach to
missing data. Some evidence to suggest that thisisindeed the caseis provided in Figure 22.
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Figure 22 Goodness of fit distributionsfor Lazega's collaboration network: the predictive distribution for a
dyad-independent model where distribution of shared partnersisconditional on MLE (a); posterior
predictive distribution for dyad-independent distribution only conditional on observed data (b); posterior
predictive distribution for full curved exponential family specification only conditional on observed data (c).
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A.IV.7. Conditions for existence of posterior distribution

Asisthe casein general in Bayesian inference the posterior distribution is aways proper

whenever the prior distribution is proper. For the most part in this presentation however we have
employed flat, improper prior distributions and it isimportant to investigate the conditions under
which the posteriors are proper. For exponential random graphs this translates into checking that

0<m(X) =_[Ziq6,(X)7z(9)d6?<oo,

when 7z(0) =1.

Definefirst the convex hull of the vector of statistics C ={z(X): X e 2=} and definetherelative

interior rint(C) of C, and the relative boundary rbd(C)= cl(C)\rint(C). For the Bernoulli(6)
random graph model it is obvious that the density of the complete graph belongsto rbd(C) and it
iswell known that the MLE does not exist when the complete graph is observed (Handcock,
2002). With an improper prior it is easy to check that the normalising constant in the posterior

o PIPRT
e’ I<j
I(1+e‘9] df=o.

This suggests the following Theorem:
When we use an improper prior and have X . froman ERGM, z(X

posterior isimproper.

) € rbd(C) imply that the

obs

For aproof see Theorem 1 in Diaconis and Y lvisaker (1979) from which we see that the above
theorem may in fact be strengthened.

AlV.7.a Existence for network data with missing information
When the adjacency matrix is completely observed we may in principle ascertain whether
z(X,,s) € rbd(C) or not (though it may be difficult in practice). Given the previous partition of
data X = (U, V) but assuming that we only have completely missing vertices so that we may
speak of the subgraph induced by the observed vertices that has an adjacency matrix U € .4, ,
denote by C, the convex hull on the sufficient statistics of graphsin <, and by
C={z(X): Xe}.

We put forth the conjecture that the marginal posterior of & isimproper if avague prior is used
and z(U) erbd(C,) .

An interesting question iswhether z(X ) € rbd(C) evenif z(U) erint(C,).

obs
A.V. Using alogistic link function to model the missing data
mechanism
As mentioned in the previous approach, as long as the inclusion variables of the dyads are
assumed independent the incorporation of more sophisticated missing data mechanisms does not
alter the analysis of the network at all. Inferring determinants of missingness may be interesting
in its own right though.
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AVI. Network dependent missingness

A possible extension isto allow for dependence within dyads when we have directed networks.

Should we include even more el aborate interdependence assumptions the analysis quickly
become complicated. It would be worthwhile pursuing the possibilities for have, at first, a
limited dependence on the edge-indicators leading to probability structures such as

Pr(éj =1] X =D = Pr(é:ij =1] X = 0).
Tentatively we may write a conditional model as

eXp{Ul 1% + y' Yi }

PI’( i':1|X7 —i'):Pr(é:i'zll ")= )
°) > : % 1+ eXp{Ul"‘Uinj +7Tyij}

where y' y; isalinear combination of exogenous attributes of the dyad. When drawing the
missing edge-indicators according to (E-3) conditional on everything else, we would have

-

1+ e’71+772(1—Vi)+7T)/i

7(V; |U!(Vj)je37‘79!’7!(§j)je37‘17/)= 1+eXp(9T5iX) T .
1+ e771+772\/\ 7Y

Hence, if 7 isnegativethe fact that v, ismissing (& = 0) contributes negatively to the
probability that thetieis present.
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B. A principled approach to the data gathering process

Whereas approach A only assumes that we have datain the standard adjacency matrix form,
possibly with some entries in the adjacency matrix missing, the approach B takes a principled
view on the entire data analysis process. This means, in principle, that we set out policy for how
the data gathering process be integrated in the statistical mechanism to produce clearly
interpretable results than lend themsel ves to re-evaluation of the process. More explicitly our
goal should be to set up rules for data gathering and data format that retains as much information
as possible about the data generating process. Thisisto tailor the datato a specific statistical
model for data. Important is also to enable and incorporate the possibility of making subjective
judgements explicit. Under the Bayesian paradigm no conclusions can ever be drawn from data
analysed by amodel that does not explicate and quantify subjective information. If the subjective
judgements are not retained at each stage of the analysis process we are unable to parse out what
datatellsus and what is prior knowledge and thus limiting our ability to learn from data.

The scope of this approach is quite ambitious and a full implementation is far away in the future.
Apart from recommending aims and goals for the data gathering process, we may develop some
minor aspects of this approach. One such approach isthe partial cognitive social structures
(PCSS) approach. The PCSS data collecting paradigm assumes that we have multiple sources of
information on one and the same relation for a set of actors. In the original cognitive socia
structures approach (CSS)(Krackhardt, 1987), it was assumed that each member of a set of actors
gavetheir version of the entire network, resulting in as many adjacency matrices as there where
actors. These different versions of the network could then be used to asses different actors
accuracy in judging who interacted with whom or to *‘ estimate’’ the commonly agreed on
network structure (by some criteria). The fact that this approach to CSS was compl etely ad-hoc
made impossible statistical inference and an informed, principled analysis of actor accuracy and
the true underlying structure of interaction. A Bayesian approach for analysing CSS was
proposed in Koskinen, 2001, 2002 and 2004b, and it was argued that the nature of data was such
that one could only really perform inference using a Bayesian methodology. Thereis a growing
body of research on similar Bayesian approaches to CSS-like data (see Dombroski and Carley,
2002; Dombroski, Fischbeck, and Carley, 2003; Butts, 2003; Karabatsos and Batchelder, 2003).

Theideain approach B that is of highest priority isto develop asimple model for pooling
information sources that builds on the extension of the Bayesian CSS given in Koskinen, Jansson
and Spreen (2002). In an analogously fashion to K oskinen, Jansson and Spreen (2002), PCSS
requires that we have multiple reports on one underlying (but unobserved) relation on a set of
actors but in contrast to the traditional CSS, we do not require all the reportsto cover the whole
set of actors. Hence, PCSS may be considered as CSS with partially missing data. In the early
version of devel oping this model we focus on the reporting mechanism of the reports (or sources
of information). In order to do this we introduce two so called detection mechanisms that are
specific to the perceiver (reporter, rater, or equivalently defined source). These are a., that relates
to accurate detection of an interactional tie, and vy, that represents the propensity or probability of
false detection of an interactional tie. To capture that some actors in the network may be more
difficult to monitor of lessvisible, two actor specific parameters are introduced. These are
collectively called ‘*visibility parameters” and individualy they are ¢ and y. The former, ¢, is
called the accurate visibility parameter and represents the probability that interaction involving
this actor is seen and detected by a generalised perceiver. The latter, v, isthe false visibility
parameter of an actor. Because an actor with ahigh visibility parameter islikely to be seen as
having relations to others when in fact this actor does not, an alternative name for  isthe
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“*celebrity parameter’’, something which immediately suggest the aternative name the ‘“talent™’
parameter for ¢.

In afull model a, vy, ¢, and v are all assumed to be individual, that is, specific to each perceiver
and perceive. To reduce the number of parameters and in order to make the model m ore
parsimonious we need to impose various homogeneity restrictions on these parameters, assuming
e.g. that groups of say actors have the same level of visibility. The success of the model depends
in part on how well we are able to handle the nature of the unobserved latent network that we are
interested in. We suggest that the most fruit-full approach isto treat the unobserved network as
an unobserved latent variable. The aim is the to include in the posterior analysis the posterior
predictive distribution for the latent network. Hence, instead of giving one point estimate for the
true unobserved structure we propose (asin e.g. Koskinen, 2002) that the analyst may explore
the entire distribution of networks that isimplied by the model and the reports that we have
observed. If we for example we are interested in knowing how many steps separates actors A and
B in the true network given the reports that we have, we may calculate the posterior probability
that there are 1 step, 2 steps, 3 steps, and so on. This could for example inform us of the risk that
A isableto pass aparcel to B through the ties in the network. At this stage we do however
suspect that the model used for the unobserved structure in the inference procedures in previous
approaches (Koskinen, 2001, 2002 and 2004b; Koskinen, Jansson and Spreen, 2002) is far to
simplistic and that the analysis would benefit from incorporating a more sophisticated network
model such asthe ERGM. This suggests that the work on LISA takes priority.

B.l. The principal data structure

We assume that there is a true network representing some generic form of interaction amongst
actorsinaset N= {1,...,n}. We assume this set of actors to be specified exogenous to any
modelling assumption we make and that the set is considered fixed. The true network is
represented by the adjacency matrix Z, which by assumption is unobserved. What we observeis
acollection of reports i .7 ={1,...,1} onthe unobserved Z. In the classic cognitive socia

structures approach (CSS) of Krackhardt (1987) Z isthe adjacency matrix of adirected graph
and each report i produces areport X;, on the entire network with elements

_ |1 ifireportsthat z, =1
10 o.W. '

In the partial cognitive socia networks (PCSS) setup we allow reporters to report on different
subsets of the dyads so that X; = (%, : (j,k) e M; = N®) . Henceif m =| M, |, we have

m=>m,

ie.s

observations as opposed to the In(n—1) = n*(n—1) observations for the traditional CSS setup.
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Figure 23 The data structure of PCSS.

In Figure 23 weillustrate the data principle of PCSS. Note that we do not propose to simply
aggregate the reports to create atrue graph with elements z, =min,_, (X, ) since we take
inconsistencies in the reports to mean something substantial. WWe might for example ascribe great

significance to the fact that in Figure 23, reporter 1 has reported {I,k} as absent whereas reporter
2 has reported it as present. Note also the reference that is made here to the distinction between a

tie reported as absent x;, =0 by i and thetie not reported on at al by i, { j,k} ¢ M, . Thisisa
crucial observation (admittedly not fully acknowledged in Koskinen, Janson and Spreen, 2002)

aswe do very rarely have explicit reports on null-dyads - typically actors are asked to name their
alters, reports are made on what pairs of actorsinteract, etc.

Butts (2007) proposes an extension to the CSS approach in Butts (2003) that explicitly models

the reporting mechanism using akind of biased nets. This approach could prove extremely useful
in dealing with the potentially systematic errors introduce by viewing the M, 's as fixed and
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exogenous. As shall become clear from the descriptions below, the CSS approach in Butts
(2003) islikely to be alittle too simplistic to adequately represent the PCSS.

B.I.1. Partial CSS with independent arcs and uniform prior on latent network
In line with Batchelder et al. (1997), we introduce the probabilities

Hiw = Pr(Xy =1|Z;, =1
and
Fi = Pr(Xy =112, =1).
These are generally referred to as hit and false alarm probabilities respectively. In afirst model

v
we make the assumption that for the reports X; isindependent of X, for al {i,u} e( 2]

conditional on Z, and their elements are independent and satisfy
Pr(xijk = Xk |Z) = Pr(xijk = Xk |ij = ij)-

If each element of Z is considered a parameter to be estimated, a saturated model with distinct
hit and false alarm parameters for each triple (i, j,k) € UW{U} xM, , would mean

2m+ n(n—1) parameters. Considering that we have only m observations we need away of

reducing the number of parameters. A convenient way of doing thisis to introduce homogeneity
restrictions on the hit and false alarm parameters. One of the simplest forms of homogeneity
restrictions is to assume that the accurate or false report only relates to who the informant is

Hiyx =a; and F, =y fordlie 7.
For this modd the likelihood function would be

L(Z,a,y; (Xi)iei ) _ H Haizmxijk (1_ ai)ij(l_xijk)yi(l_zjk)xijk (1_ 7, )(1_ij)(1_xijk) 1 (E-4)

ies (j,k)eM;
which is basically the likelihood for a collection of independent Bernoulli trias.

B.l.1la. Posterior distributions of detection parameters

With alikelihood of the form (E-4), obtaining the posterior distributions for the edge indicators
and the detection parameters is straightforward. Because of the large cardinality of the space of
Z, &, we cannot however obtain the posterior distribution in an analytically tractable form.
Assume that let Z and the detection parameters be independent a priori with product prior
7(Z)z(e,y), giving ajoint posterior distribution

7Z'(Z,(,¥,]/ | (Xi)ie;') oc L(Z,(l,]/; (Xi)ie;')”(z)”(a!y) .
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Assuming independent Beta(a, ,b, ) and Beta(a, ,b, ) priors for the detection parameters, the
fully conditional posterior of «; giventherestisBeta(a, Ea ), where

a, =a,+ >z adb, =b, + > z,(1-x,).

(J k)M (Jk)eM;

Similarly for y; given the rest the posterior is Beta(a, By ), with

a=a + >z, %, and 57 =b, + D> 1-7,)A- %) -

(Jk)eM; (J.k)eM;

Hence for agiven redisation of Z we may easily draw detection parameters from the posterior
distribution or calculate moments for the detection parameters. The problemisthat Z is
unobserved and has to be inferred somehow.

B.I.1.b. Posterior distributions of latent network - Bernoulli graph

Consider using as aprior distribution for Z a Bernoulli(p) random graph model. Investigating the
likelihood function (E-4) we see that the fully conditional posterior of Z given everything elseis

7Z'(Z|(,¥,]/,(Xi) )OCL(Z!a!y;(Xi)ie/)ﬂ-(Z)

ies

{H Ha Zji Xijk (1 a ) (1~ qu) (1 Zjy) % (1 }/ (1 Zj )(1- Xuk)J H p Zj (1 (1 Zi) .
i

ie.s (j.k)eM, (jk)eN®

This may be further simplified so that we recognise this to be the pmf of a Bernoulli graph with
inhomogeneous arc probabilities p;,

@-p [Tr™a-n"|

P =11+ D ﬁ;;:k (- @) (E-5)

[SS7AIN

where .7, =(€.7 :(],k) e M,).

B.l.1lc. Gibbs sampler

Based on these fully conditional posteriors we may set up a Gibbs sampler that in each iteration
circles through the following updating steps:

(a) For each (j,k) e N@ draw

ij a7, (X)), ,Z_(j’k) ~ Bernoulli(pjk),

where p,, iscalculated according to (E-5).
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(b) Conditional on thedrawn Z, for each i €.7 draw

a; |a7i!7/!(xi)ie7'!z - Beta(aa‘ !Bai)
(c) Conditional onthedrawn Z, for each i .7 draw
vila,ys, (X)), ,Z ~Beta(a, 76}/i)

The resulting sequence (a9, »9,Z9)¢, thus produced will be an approximate sample from the
joint posterior distribution of the detection parameters and unobserved arcs given the reports.

B.I.1d. Use of prior distributions

The hyper parameter p for Z, is used as atool for usto adding prior information regarding our
belief in the density of the latent network. It isavery blunt tool and has to be used with some
caution. The effect of using different values of p is seen in (E-5) where it enters multiplicatively
in the second term of the denominator as (1 - p)/p. Notethat (1 - p)/p=1for p=.5,i.e. witha
uniform distribution on all digraphs a prior thereis*‘‘no’’ contribution of the prior distribution to
the posterior distribution.

The prior distributions for the detection parameters are meant to capture our prior belief
regarding the accuracy of the different reporters (records, sources or whatever is considered a
report). The Beta distributions are fairly easy to understand since the support is bounded and the
shape of the distributions allocate probability mass to different sub-intervalsin theinterval (0,1).
It istempting to use the ‘*vague'’ prior distribution for the detection paramters, i.e. Beta(1,1),
which is equivalent to the rectangular distribution on the unit interval. There is adanger in doing
this however since the model is not fully identified.

B.l.le I dentifiability
The model with likelihood function (E-4) is not fully identified since

L(Z,O(,]/;(Xi)ie_7)= L(Zcia*’y*;(xi)ie.y)!

where Z° isthe adjacency matrix of the complement graph to that for which Z is the adjacency
matrix, a* =y, and y* = a . Hence with uniform priors everywhere the posterior distribution is

multimodal in the sense that each point in the parameter space has a complementary point, that in
a sense has the opposite interpretation, with the same posterior probability (redly, the same
value of the posterior ordinate). What is needed to achieve identification and near identification
isdiscussed in Koskinen (2004b). As reported thereit isfar from atrivial problem and it isaso
argued against using restrictions on the parameter space. For our purposes it seems most
appropriate to adopt afully subjective Bayesian analysis and employing meaningful proper prior
distributions. Naturally, afully subjective Bayesian analysis ought to be checked for sensitivity
to prior specifications.

B.I.1f. Improving the prior for the unobserved network

Since the Bernoulli graph model seldom is a useful model for real socia network data (c.f.
Robins, et a., 2006) we would do well to have a more redlistic prior distribution for the latent



network that gives us more freedom in defining likely latent structures. There are many
candidates for improving on the Bernoulli graph model but instead of listing different options we
propose to use an exponentia random graph model (Frank and Strauss, 1986; Pattison &
Wasserman, 1999; Robins, Pattison, and Wasserman, 1999; Wasserman & Pattison, 1996;
Wasserman and Robins, 2005, Snijders et al., in press; Hunter and Handcock, 2006) since many
of the models proposed in the literature are special cases of this model (for example the

Bernoulli graph model). To recap the exponential random graph model (ERGM), we define the
pmf for Z apriori to be

m(Z)=exp(> 0u.(2)-9(0)),

where 6 = (6,,..., HD)T isavector of real-valued hyper parameters, the u, s are functions of the

adjacency matrix and a set of fixed vertex level attributes, and 9(¢) isanormalising constant
that is only afunction of the hyper parameters.

The Gibbs sampler updating steps for the detection parameters remain the same as before since
the prior z(Z) cancel in the full conditional posterior distributions for these. Since the ERGM
allows for dependencies between arcs the updating step for Z differs from the previously
presented Gibbs sampler however. To begin with the interdependencies mean that we have to
draw the entire Z in one step. For most ERGM s performing draws cannot be made directly but
requires an MCM C approach. If, say, a Metropolis-Hastings step is used to update Z, the
algorithm is not strictly speaking a Gibbs sampler anymore (it is important to keep in mind
however that the Gibbs sampler is a special case of the Metropolis-Hastings agorithm).

To write up the fully conditional posterior of Z given the rest we begin by inspecting the
posterior as given by Bayes theorem

7z(Z|a,y,(Xi) )OCL(Z’a’y;(Xi)ie/)ﬂ-(Z)

ies

{H Ha ZjkXjk (1 Jk(l—X”k) (1— k) Xijc (1 )(l Zj ) (- X”k)]exp(zk 19 U, (Z) 9(9))

ies (j,k)eM;

By taking the logarithm of the likelihood function and rearanging we see that we may write the
full conditional posterior as an ERGM

7(Z ey, (X)) Oczszlekuk(z)—l_z szkf(xijkiaiiyi)!

ies (j.k)eM,
where

a(l-b) +log (1-a)
b(l-a) (1-b)’

f (x,a,b) = xlog

In order to get this expression in amore convenient form we write U, (Z) = Z

0 =0(,7)=loge, (1-y)-logy,(1-a,), G(Z) =Y, , ., Z - ad

(j.K)eM; ZJ'kXijk )
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67i = 5, (¢;,7) =log(l— ;) —log(1—y;) , and we may put the fully conditional posterior in the
familiar form

2Z ey (X)) o 2 0u2)+ Y 66(2)+ .00,(2) . (E-6)

ies ie.s

The updating step (a) in the Gibbs sampler can now be replaced by a Metropolis-Hastings
updating step. Given the current adjacency matrix Z, we propose amove to Z* which hasa

randomly chosen element (j* ,k*) set to its opposite, zj,k =1-z, . Thismoveis accepted with
probability min{1,H}, for

H = (Z* |y, (X))
z(Z]a,y, (X))

=exp{Z;’:lek(uk(Z*)—uk<2))+zé @) -a@2)+Ya@ (Z*)—E}(Z))}-

ies ie.s

B.I.1.0. Drawbacks of ERGM prior

Fixing the parameters in an ERGM prior, in other words fixing the hyper parameters, may prove
both hard and overly restrictive. Hard because it may be hard to know a priori what type of data
aspecific model produces. Overly restrictive because the chosen model may place very little
probability mass on graphsin the likely region of data. There is no obvious way of scaling the
ERGM to diffuse the pmf while still retaining the *‘location’” asis possiblein location-scale
models. Even if we do have good prior information, say parameters estimated from similar data,
incorporating this information through hyper parameters for Z may not be the best strategy.

B.I.2. Treating unobserved network as a latent variable

An approach to PCSS that is subtly different from the one outlined aboveisto treat Z not asa
parameter to be estimate but rather alatent unobserved variable. This reduces the number of
parameters as well as being more flexible. The procedure (like that with ERGM prior) produces
adistribution of graphs but also a distribution for the structural parameters. We may point out
that thisis better that using a point estimate (of Z) since a point estimate does not include the
uncertainty in data collection - examples of measures to cal cul ate from the distribution of graphs
is connectivity; the probability that A is able to send a package to B through his network using at
most k steps; etc.. The posterior distribution for the ERGM parameters alow for further and
future use of thisinference in analyses of social network data in accordance with the sequential
nature of Bayesian inference

To implement this addition to the PCSS we may keep to the details above for updating Z, «
and y with only one extra additional step. Let 7z (8) denote the prior distribution for the

parametersin the model for the latent variable Z. Since Z, X, « , and y areall fixed in the

updating step for & we can easily see that updating ¢ may be done as in the case of inference
for aregular ERGM. Hence we can perform the updating step for ¢ using one LISA updating

step.
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B.I1.3. Introducing visibility parameters in PCSS

Introducing visibility parameters in the inference scheme outline above is straightforward if
these are introduced multiplicatively:

Hix = 24,0, and Fic = 7 W foradlie.s and j,ke N.

The MCMC inference scheme basically remains the same with some minor differences.

B.1.4. A probit formulation of the PCSS

When we start relaxing the homogeneity assumptions one by one, we eventually run out of free
parameters. In addition interpretation of the results become more cumbersome as the number of
parameters increase, especially seeing as we need to assign prior distributions to all the detection
and visibility parameters. A way forward is model ling the probabilities using probit link
functions as in Koskinen, Jansson and Spreen (2002).
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C. Missing vertices

Dealing with network data where vertices, possibly an unknown number, are missing presents us
with ahost of interrelated problems of both a conceptual nature as well as technical. Although
we may sometimes think that we have a well-defined notion of what constitutes a network,
typically our intuition is based on an ill-founded vague notion of socia interaction. We tend to
confuse the units of measurement with what is actually measured. Naturally some definitions of
what constitutes a network are more susceptible to falling pray to this fallacy than others. Say for
example that we subscribe to the hypothesis of six degrees of separation for arelation such as
that defined in Milgram (1967), in which case it would be nonsensical to speak of estimating the
size of the network. Rudimentary statistical methods are available for the case when the
underlying population is well defined. These methods typically rely on very ssimplistic
assumptions regarding social interaction but the simplicity of these models may aso promote
their usein preliminary analyses, in which case we - because of the high degree of uncertainty -
recommend using the Bayesian approach to fitting the model of Frank and Snijders (1994)
presented in Tallberg (2004).

We think that in the context of dealing with missing vertices one need to consider the subtle
issues underlying socia network theory more thoroughly. Kossinets (2003) touch on some of the
issues surrounding missing vertices, there are however much more fundamental ontological and
epistemol ogical questions that have to be developed and explored. One of these questionsis
generaly know by the name of the boundary specification problem (Laumann et al 1983; White,
1992). Ancther issueisthat of scaling and how to large networks relate to smaller networks
(Anderson, Butts, and Carley, 1999; Robins, Woolcock, & Pattison, 2005).

The source of the most frequent discrepancies between actually collected data and the data of the
ideal research setup must arguably be the way inclusion of vertices depend on their ties to other
actors. When trying to analyse social network data from a statistical point of view the fact that
the inclusion probability of the units of analysis (the dyads, triads, etc) are dependent of the
values of the same make things complicated. However, it makes intuitive sense to sample the
network using alink tracing mechanism or a snowball sampling scheme. Thistiesinto the
problem of missing vertices since one may argue that a plausible missing vertex mechanismis
that of stopped sampling. In combination with tool for handling edge likelihood assessment, a
statistical model that handles snowball sampled data could prove very useful for dealing with
this type of missing data mechanism. Thus far however, there only seems to exist one approach
that has the potential for modelling snowball sampled datain anon-trivial way and that is work
in progress by Pattison (2007). This approach holds alot of promise but tailoring it to our needs
may be far off into the future.

If we have reason to believe that there is only a small but unknown number of missing vertices
an extension of the approach in A may be applicable. This consists of transforming the missing
node problem into a set of ERGM s with missing dyads where each conditional model is
conditional on afixed number of missing vertices. In practice we do a series of estimations
where we start by assuming that there are no missing vertices. We the proceed to introduce one
““imaginary’’ ghost vertex an do estimation in the manner detailed in approach A. We then
continue to introduce successively more ghost vertices. The goal is to produce posterior
predictive distributions on the edges or arcs that pertain to the missing vertices for each scenario
separately. If there is some structure on the network the posterior predictive distributions will
inform us as to where the missing vertices are in the structure of the network effectively
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informing us of where (in the network) to look for further actors. A potential source of problems
is the homogeneity assumption of the ERGM and unless we include actor attributes and other
exogenous sources of information thereis arisk that (observed) actors are likely to be related to
the missing vertices in proportion to their activity. At a higher order of interdependency, this
would be expressed by mirror-scenarios by which we mean that certain structures relating to the
missing actor may be invariant under partially homeomorphic transformations. Naturally we do
not have any covariates for the ghost vertices and hence we also have a problem of missing
covariates that has to be dealt with using approach E.

The next step isto develop a scheme for obtaining a posterior distribution on the number of
missing vertices. This problem is equivalent to amodel selection problem. To obtain the
posterior we hence need proper prior distributions for the model parameters, the determination of
which is a delicate problem already in the case of an ERGM without missing data. Here it is
rendered even more difficult since we want to compare models defined for networks of different
Sizes (again see networks Anderson, Butts, and Carley, 1999; Robins, Woolcock, & Pattison,
2005). Some of these problems can be alleviated by reporting result for different prior
distributions in order to get a handle on how the posterior is influenced by the prior distribution.
There is aso the additional technical problem of how to calculate the so called marginal
likelihood that is needed for Bayesian model selection. A procedure that works for the ERGM
for an approximate MCM C agorithm was presented in Koskinen (2004a) but it is yet to be
determined how this can be modified to work in the LISA agorithm and in the presence of
missing data. There are several interesting aspects that may be studied in this framework such as
how scaling works; whether increasing the number of ghost vertices improves fit enough to
offset the increase in complexity; etc.

Fitting the ERGM s sequentially, conditional on the number of vertices can in theory be done
using conditional inference (relatively straightforward once A solved). For similar types of
problems in other areas of statistics, one usually prefersto fit the model and the model
dimensionality simultaneously. The inference procedure would then answer severa questions at
the same time by producing ajoint posterior for the parameters and the number of vertices.
Technically though, it seems very hard to implement a joint analysis because of (yet again)
scaling issues.
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Figure 24 lllustration of sequential fitting of ERGM sto networkswith ghost vertices.
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D. Vertex doppelgangers - Node mapping between networks

Sometimes when using different data collecting schemes for different relations we may end up
with ambiguously defined vertices. As an example we may collect interaction data from
exchanges of emails where we only know the identities of the senders and receivers up to their
aliases or email addresses. In each network considered separately, there may be confusion as
what unique individuals map to what email addresses and if there are individuals with multiple
email addresses the size of the network is undefined. When the networks are considered jointly
thereis the additional problem of non-overlapping email addresses as addresses that are not in
the intersection of address-sets may be pertain to either unique individuals as well asindividuals
that are in the intersect of (true) vertex sets.

We propose a solution for the case when we wish to fit a multivariate ERGM to two (or more)
relations on a set of vertices where small proportion of the vertices may be doppelgangers
(triplegangers, and so on). The solution is primarily of atechnical nature and asin the case of
approach A it relies on simulating missing data in the course of estimating parameters. If we
denote by “‘id’’ the identities of vertices as these are presented in the data and denote by *‘true
vertices'’ the true but unknown set of unique vertices, an observed network with doppelgangers
maps to several different graphs depending on what ids are joined together to true vertices and
what ids are considered unique, separate vertices. In the course of implementing the LISA
algorithm vertices die or are born in each iteration so that the size of the network fluctuates
during the estimation process. This has the interpretation that inferences are made for all possible
mappings of ids onto true vertices and that these inferences are wei ghted together to create a
cumulative inference that is unconditional on any specific mapping. The proportions used in this
weighting, the weights as it were, are given automatically in the course of running the algorithm
through standard probability calculus.

Since the fitting of the MERGM to data with doppelgangers involves (probabilistically)
comparing networks of different sizes (see A on scaling up and different size networks) there are
possibly several implementation issues that need to be tackled in order to make the inference
procedure practically feasible. It is conceivable that one in certain circumstances need to invoke
adegree of the notion of structural equivalence for idsin different vertex setsfor two different
relation in order to make use of data. By this we refer to cases when we may have reason to
believe that the structural position of ids in the network is a source of information as to the true
identity of theid - if two ids have ties to amost the same set of others we may suspect that these
two ids belong to the same true vertex. Thisline of thinking applied across networks may require
that we assign high prior probability to multipleties (in the sense that u relatesto v on relation 1
impliesthat u relatesto v on relation 2).

Asin approach C there are many conceptual issues to be resolved and investigated. There may
also be a scope for looking into the literature on matching using relative automorphism.
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E. Missing covariates

Although treated here as a separate issue, the issue of missing covariates when doing social
network analysisislikely to be an integral part of any missing data scheme. It isfor example
hard to imagine cases where all covariates are known for al non-respondents. Nevertheless,
since attributes and covariates are known to improve model fit for most social network problems
(see e.g. McPherson, Smith-Lovin, and Cook, 2001, on the importance of homophily; see
Robins, 1998, and Robins and Pattison, 2005,for details of how attributes are incorporated into
ERGMs) detailing the treatment of missing covariatesis essential for effective modelling. The
principal difference from the treatment of missing data for interaction is that there are no obvious
models for what is missing. For approach A for example, observed data informs us about missing
data through the model for data. Since covariates are typically considered fixed thereis no
covariate model in the standard case. We propose to use aversion of the general location model
(Olkin & Tate,1961; Krzanowski, 1980; see also Cho et a, 2001) to allow for both continuous
and categorical missing covariates.
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G. Pseudo-code for fittting ERGMs to data with missing
information on dyads

Routine LI SAforMissingDyads

This routine produces a sequence (6“, V) from the posterior distribution given U. Here model
specification, number of parameters, covariates, etc., are suppressed. Note that in implementation
alot of efficiency may be gained from tailoring the algorithm to the model considered. As an
example alot of efficiency can be gained in ERGMs from the fact that q,(x*)/q,(x) may be

written in terms of the change statistics.
LI SAf or M ssi ngDyads( X)

Initialize(X)

a dstate: =X

for t:=1 to Nunber O Sanpl es {
out put MetropolisHastingsUpdati ngStep()

for j:=1 to Nunber O El enent sOF V {
out put G bbsUpdati ngSt ep()
a dst at e: =NewSt at e( X, V; )

Initialize(X)
V:=<arbitrary state>
00: =MPLE( U, V)

H: =- Hessi an( U, V, 6)

Proposal Vari ance: = ——H?

V2rp

N: =Nurber Of Act or s( X)

/*It is usually efficient to set 6, to the MLE and Hto the Information Mtrix

usi ng i nportance sanpling or Robins-Mnro with the MPLE as starting val ue*/

/*How to set NunberOflterations, K, m burnin, and c depends on anong other things
size of graph*/

return Nunber Of I terations, K, mburnin, 6, V, N, Proposal Vari ance

Met r opol i sHast i ngsUpdati ngSt ep()

X: =0 dState

0*:=Mul tivari at eNor nal (6,.1, Proposal Vari ance)/ *\Wat proposal distribution is suitable
is case specific but for e.g. ERGW this nultivariate nornal proposal is a convenient
choi ce*/

A 0%, 0g) : =LogLl S(6*, 6y, K, m A dSt at e, bur ni n)

u: =Uni form

i T 1og(u) < logq, (X)/q, (X)+A(6*,6,) - A(6,1.6,) {

0,: =0*
}
el se {

Ot: :Gt.l
}
return 6
Uni f or n( A)

/*CGenerate a variate fromthe uniformdistribution on the set A If no argunent
suppl i ed generate a variate fromthe rectangular distribution on the unit interval*/
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G bbsUpdat i ngSt ep()
X: =0 dState
X*: =NewsSt at e( X, 1- Vi .1.})

Probabi lity:= {i1q, (X)/q, (X*)["
u: =Ber noul |'i (Probability)
Viit= Venj +u(1l-2 Vi)
return Vi ;

NewSt at e( X, Xe)

X*=X

/*Argunments synbolical shorthand for: set elenent e in X* equal to X, */
/*When network undirected e represents a dyad*/

return X*

LogLl S(6*, 6, K, m A dSt at e, bur ni n)
for i:=1 to burnin {

A dSt at e: =Met r opol i sHast i ngsUpdat i ngSt epG aph(6*, A dSt at e)
}

for j:=1to m{
0(j):= 06 [1-(j-1)/(m21)]+6(j-1)/(m1)/*6 is a snmoth mapping bridging 6*
and 0p*/

for j:=1to m{
v, = Uniform([K])/*[K={1,...,K*/
Yj(vl): =0 dState
for k:= Vj+1 to K {
Yj(k) : =Met r opol i sHast i ngsUpdat i ngSt epG aph(6(j), Yj(k'l))

Wj,j+l,k:\/qa(j)(Yj(k))QH(j+1)(Yj(k))/qa(j)(Yj(k))/*NB when | og[qe(X)] =

0"z(X); W jek = exp[l/2(0(j+1)- 0(j))" z(YV)]*/
ifj>1

= (k) (k) (k)
W, 1= 3y (Y )l (Y1) flyy (Y )
for k:= vj—l to 1 {

Yj(k) : =Met r opol i sHast i ngsUpdat i ngSt epGraph(6(j ), Yj(k*l))

W, 11 = (Y )y (Y9) 0, (V)
if j>1

W, 51 =2 (Y )0 (Y ) a0, (Y )

ifj <m{
u;: =Randomi t hPr obabi i ties( (W, .5, )i /ZW, 1))
Odstate: =y

}
}

* . m-1s K m-1 K
M0*, 0) : = IOng:l ka Wi ik _Iong:l ke Witk
return A(6*, 6p)

Met r opol i sHast i ngsUpdat i ngSt epG aph(6, A dSt at e)

X: =0 dSt ate

El ement : =Uni f or m{ \G((N, 2) )/ *When network directed the set is N? instead*/
X*: =NewSt at e( A dSt at e, 1- Xg enent )

u: =Uni f orm
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if 1og(u)<logq,(X*)/q,(X) {
A dst at e: =X*

return O dState
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