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Executive summary 
The tools and theories of social network analysis (SNA) are important to understand how social 
interactions influence the behaviour of social actors and how in turn their actions shape the social and 
organisational environment in which they operate. SNA has been employed to explain as diverse social 
phenomena as the diffusion of innovations; disease spread; team performance; coordination of corporate 
board decisions; balance of trade between countries; etc. Understanding the relational structures of groups 
and categories of social actors is essential to understanding their goals, motivations and actions.  
 
More recently, SNA has been used to inform intelligence decisions, to investigate the structure of terrorist 
networks, and to examine exchanges within criminal and fraud networks. Although general social science 
suffers from issues of data inadequacy, it still enjoys the benefits of being able to gather open information 
from surveys, experiments and interviews. Needless to say these options are not always available to 
intelligence analysts who crucially must deal with data inadequacies when data sources are neither open 
nor complete. 
 
For such reasons, recent scientific attention has been addressed to how data inadequacies affect SNA 
conclusions (e.g. Kossinets, 2006). For SNA data, the presence of missing information can have major 
effects, e.g. in determining connectivity and other system-level properties. Classical statistical treatments 
for missing data are simply not appropriate for relational data. The recent literature provides a somewhat 
better understanding of missing data effects but does not offer principled methods for drawing sound 
inferences.  
 
This paper summarises our approaches to establish principled inference based on incomplete SNA data. 
These approaches are all under development, but are extremely promising. We propose to deal with five 
distinct yet interrelated data problems: 

� fitting statistical models to determine social network properties when particular links in the social 
network are not known; 

� methods for pooling incomplete relational data information from different sources; 
� methods for dealing with network data involving covert actors (i.e where the network relations of 

some actors are not known); 
� methods for dealing with network data where some actors may be operating with multiple aliases 

(network doppelgangers), and identifying who those actors might be; 
� methods for dealing with network data where personal information about particular actors is not 

known. 
 
We have made good progress on the first of these (in an illustrative example, we have managed to deal 
successfully with 20% missing ties.) We can generalise our first approach to develop methods in the other 
four areas. Each method provides principled inference in the face of incomplete data, and a measure of 
uncertainty. Moreover, each method may be used to direct further data collection, identifying areas where 
additional information would best diminish uncertainty. For each method, we envisage an iterative 
exchange of data analysis and collection to optimise the chances of obtaining valuable information where 
data gathering resources are limited. 
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The importance of dealing with missing data in social network analysis (SNA) becomes clear 
when we consider the fundamental differences between the nature of missing data in the typical 
standard statistical analysis with the typical scenario in SNA. 
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Figure 1 I llustration of missingness in SNA 
 
It seems plausible to assume that we have an intuitive understanding of the network topology in 
terms of distances between nodes. If we for example consider the two vertices A and B in Figure 
1, and assumed that only the solid lines were present, it would be natural for us to presume that 
whatever network processes that are going on in B's part of the network, these are unlikely to 
affect the network processes in A's part of the network. Had there on the other hand existed a tie 
(dash-dot) between A and B that went undiscovered, the picture would have been quite different. 
All of a sudden A and B are directly connected and when thinking about the layout of the 
network, the "pseudo-spatial" arrangement of nodes according to their proximity, we would be 
inclined to redraw the entire network. Similarly, had a vertex C went undiscovered, it may well 
have been the case that this vertex constituted an indirect link (via dashed edges) between A and 
B. Again, our intuitive understanding of vertices A and B's position in the network in relation to 
one another, as well as their overall position, would alter drastically with this new piece of 
information. Should, on top of everything else, C be connected to what we previously considered 
to be the centre of the network (dotted lines) many of our initial conclusions regarding the 
workings of the network would be altered radically. 
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Very generally put, what distinguishes missingness in standard statistical setups from those in 
SNA are the facts that in statistical analysis with independent observations: 

1. we only really worry about whether missing observations differ from the obtained 
observations 

2. interpretation of observed observations do not change with the knowledge (of the values) 
of missing observations 

In SNA, because of the inherent dynamics, the self-organisation, and emergent qualities, other 
observations may be affected even if missing observations similar to observed observations. 
�
As was pointed out by Stork and Richards (1992), ignoring missing data (e.g. in the form of non-
respondents), and only treating the available data (c.f. ‘ ‘available-case’ ’  analysis, Little and 
Rubin, 1987, sec. 3.3), may be problematic since this is akin to redefining the boundary of the 
network. The importance and the difficulties surrounding the issue of the so-called boundary 
problem (Laumann et al., 1983), may be highlighted by considering the two basic ontological 
principles for social networks: the nominalist approach and the realist approach. 
 

(a)  (b)   
Figure 2 Sketch of pr inciple ontological definitions of networks: (a) the nominalist approach, (b) the realist 
approach 
The nominalist approach to defining the network is in terms of a predefined set of vertices that is 
defined in terms of group membership, actor attributes, relations, events, etc, that is meant to 
capture the relevant social neighbourhood of the actors for the particular relation that is studied. 
A relation may also be self-defining in terms of whom it relates to such as when work difficulties 
are studied in an organisation (workplace), in which case, say, work difficulties are likely not to 
have sensible interpretation across different settings. It is however hard to say how generally this 
may be applied to relations and, as remarked by Kossinets (2006), when an substantial number of 
ties extend beyond the predefine set of vertices (as in the case of Bearman et al., 2004, where 
60% of choices made by student in the school studied extended outside the school) it may be 
hard to motivate their exclusion. Not only the quantity of ties extending outside of the 
prespecified set of vertices may be a problem but we may not always know whether or not the 
most important ties are those that cross over or not. 
 
Even when we may rule out errors associated with when the same type of tie crosses the 
boundary, there may be different types of ties (that are not so easily confined to the set of 
vertices) that cross over. An example of this could be when work place advice is contingent on 
friendship (see e.g. Lazega and Pattison, 1999, for an elaboration on the interdependency of 
different relations). Similar issues may result from overlap of settings (Pattison and Robins, 
2002). 
 
The realist approach assumes that the relevant boundary of the network is that which the actors 
themselves consider to be the boundary. Roughly this would translate into defining the network 
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boundary from successively sampling waves in a snowball sampling approach. Conceptually this 
might beg questions of how we determine the initial sample, where and how do we stop without 
violating the realist approach and, what is more - what if the theory (hypothesis) of six degrees 
of separation is indeed true? 
The above issues serve to illustrate that it is not only difficult to deal with missing data in SNA 
but also that the conceptualisation of missingness in SNA highlights the manner in which 
assumptions of ontology and epistemology are intertwined in SNA. (A fairly comprehensive 
survey of network measurement is given by Marsden, 2005) 
 
A frequently used model for the ties in a social network, the ERGM, may be derived from how 
ties from one actor to another may depend on ties between other actors (Robins and Pattison, 
2005). One interdependence assumption gives rise to the class of Markov graphs (Frank and 
Strauss, 1986) with the accompanying dependence graph in the left hand panel of Error ! 
Reference source not found., for 4 vertices (i, j, k, and l). Interestingly, if we were to remove 
the variable corresponding to the edge indicator for e.g. { k,l} , and wish to estimate a Markov 
model to the remaining indicators we see that the dependence structure is ‘ ‘distorted’ ’ , that some 
of the indicators that were not previously tied are so when we marginalise with respect to the 
missing indicator. 
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Figure 3 Dependence structure for  Markov model on 4 ver tices with complete data (left) and with dyad {k,l} 
missing (r ight) 
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The first category, A, assumed that our primary interest is in fitting an exponential random graph 
model (ERGM) (Frank and Strauss, 1986; Pattison & Wasserman, 1999; Robins, Pattison, and 
Wasserman, 1999; Wasserman & Pattison, 1996; Snijders et al., in press) to social network data 
in the form of standard sociometric data represented by an adjacency matrix (Wasserman and 
Faust, 1994). The ERGMs have proved to be superior to many competing models (such as 
various scale-free based models) in that ERGMs (and their recent extensions, c.f. Snijders et al., 
in press) are capable of reproducing real social networks to a greater extent (Robins, Woolcock, 
and Pattison, 2005). Furthermore, we assume that information is missing as to the interactional 
status for some dyads (pairs of actors), either as a result of insufficient monitoring of some dyads 
or through non-response or lack of knowledge of the ties to or from specific actors (in which 
case information would be missing row-wise or column-wise from the adjacency matrix). 
Researchers have pointed to the difficulty in dealing with this and similar types of missing data 
(Burt, 1987) and the pitfalls of not dealing with it (Kossinets, 2003) but there are few 
suggestions as to how we should deal with this type of missing data. Robins et al. (2004) define a 
model for the ties in the network that allowed for some actors being respondents and others 
being non-respondents but apart from not being flexible enough (it requires that non-respondents 
are uniquely defined) their estimation relied on an approximation, the pseudo likelihood estimate 
(MPLE) (Besag, 1975; was elaborated for random digraph models by Strauss and Ikeda, 1990; 
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Frank, 1991; and Wasserman and Pattison, 1996), of the maximum likelihood estimate (MLE), 
that is known to be unreliable (Crouch, Wasserman, and Trachtenberg, 1998; Dahmström and 
Dahmström, 1993; Corander, Dahmström, and Dahmström, 1998, 2002; Snijders, 2002; 
Handcock, 2002, 2003). Other approaches to handling missing data rely chiefly on ad-hoc 
methods for imputing missing data (Stork and Richards, 1992; Huisman, 2007; Gile and 
Handcock, 2006). 
 
Taking a Bayesian approach1 we propose a Markov chain Monte Carlo (MCMC) algorithm that 
given a few assumptions regarding what causes observations on dyads to be missing allows us to 
fit an (curved) exponential random graph model to social network data with partially missing 
information. Parameter inference conditional on complete data is performed using the Linked 
Importance Sampler Auxiliary MCMC algorithm (Koskinen, 2006) and for missing data the 
conditional distribution is given straightforwardly by the (curved) exponential random graph 
model. Note that the success of this model-based missing data scheme relies crucially on the 
Bayesian approach, since that is the only statistical paradigm capable of treating missing data in 
a consistent way (see the seminal paper on data augmentation by Tanner and Wong, 1987). 
There is also a more general motivation for favouring the Bayesian approach in that it is unclear 
whether the asymptotic results that are the main motivations for using ML estimation hold. 
Tentatively it looks as if the normal approximations of the distribution of MLEs and standard 
errors are reasonably good (as judged by the similarity of the point estimates and estimated s.e.s 
to the posterior distributions in Koskinen, 2004; for possible pitfalls when using MLEs for binary 
data see e.g. Mantel, 1987). That said, the MLE is typically used because it is consistent (i.e. 
given enough data the MLE will be arbitrarily close to the true parameter values) but since we do 
not really know how the ERGM scales up we don't know how to make use of this asymptotic 
result (see Anderson, Butts, and Carley, 1999; Robins, Woolcock, & Pattison, 2005, for scaling 
up; some asymptotic results for exponential family distributions with interdependent 
observations are given in Strauss, 1986). 
 
Being able to accommodate missing data is important to social networks in general, since it 
provides a way of dealing with scaling effects. It is well known that ERGMs defined for different 
size networks are not readily comparable because of how different graph statistics ‘ ‘scale-up’ ’  
differently (again, Anderson, Butts, and Carley, 1999; Robins, Woolcock, & Pattison, 2005). 
Hence, if you disregard the missing portion of a network when fitting an ERGM or a multivariate 
ERGM, you will end up with a model that is not (in principle) comparable on the size level of 
the network you really want to investigate. 
 
The notion of missing data on the level of the dyads extends the set-up where actors may be 
unambiguously classified as respondent or non-respondents (Robins et al., 2004) to data 
collection schemes where dyads are observed one at a time. Other interesting extensions include 
the cases of missing unknown actors; Multivariate ERGMs (Pattison and Wasserman, 1999; 
Koehly & Pattison, 2005) where different relations may be defined on different subsets of actors; 
Similarities of different networks of different sizes. 
 
We briefly discuss performance of the suggested approach and its limitations. Of particular 
interest is the question of how little data is needed for the inference scheme to be practically 
feasible. We provide some conditions that have to be met in order for inference to be possible 
when we have missing data. 
 
                                                 
1 For an accessible and non-technical introduction to Bayesian inference in a general behavioural and social science 
context is given in for example the special issue of Sociological Methods and Research (Western, 1999) 
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Central to solving this inferential problem is the development of the LISA algorithm and hence it 
must be consider a first priority for the project to write up and submit Koskinen (2006). Some 
initial progress has been made and the algorithm seems to compare favourably with the only 
other available algorithm (Møller et al., 2005) for performing Bayesian inference for this class of 
models (models for which the normalising constant in the likelihood is not analytically tractable; 
Note however, that there is an approximate Bayesian inference scheme proposed in Koskinen, 
2004a). The second step is to apply LISA to the problem of missing data as framed here and 
subject Koskinen (2007a) to public scrutiny. Some progress is reported here in the research plan 
and tentatively we can conclude that in a case study, the removal of up to two actors from a the 
collaboration network of 36 lawyers (Lazega, 2001) has little influence on the parameter 
estimates. 
 
Future extensions consist primarily of extending the model and inference scheme to include 
more complicated missing data mechanisms than that used in Koskinen (2007a). In the long run 
it would be desirable to have more realistic assumptions about what causes data to be missing. 
Some extensions that increase the plausibility of missing data scheme are easy to incorporate in 
theory but to asses whether these are practically implementable is an empirical issue as well as 
matter of technical experimentation. 

A.I I . The L inked Impor tance Sampler  Auxiliary Var iable (LISA) 
Metropolis Hastings for  Distr ibutions with Intractable Normalising 
Constants. 

In most instances of Bayesian analysis (for a comprehensive treatment of Bayesian inference see 
for example Bernardo and Smith, 1994, Lindley, 1965, and Box and Tiao, 1973) of empirical 
data one has to rely on numerical methods for estimation. The most common set of tools for 
performing numerical Bayesian inference is Markov chain Monte Carlo (MCMC) methods 
(Gilks et al., 1996). Rather than calculating point estimates, measures of uncertainty, interval 
estimates, etc, analytically from the posterior distribution of the parameters given observed data, 
MCMC is a methodology for drawing samples from the posterior distribution. Since all 
information and the extent of the uncertainty regarding the parameters is captured by the 
posterior distribution, all relevant quantities needed for drawing conclusions about the model can 
be obtained from the posterior sample. For example we may calculate the posterior expected 
values for a parameter given data using the ergodic mean, i.e. taking the sample average for a 
parameter in the posterior sample. The main advantage of MCMC is that the precision of the 
results obtained depend in principle only on the number of sample points drawn from the 
posterior of the parameters given data (Tierney, 1994).  
 
MCMC for posterior sampling typically only requires that the posterior distribution is known up 
to a normalising constant. This means that we only need to be able to evaluate the likelihood 
function and the prior distribution for any given parameter point. Lenient though this 
requirement is, there are several important models in statistical mechanics and in the social 
sciences where the likelihood function cannot be evaluated because the normalising constant in 
the likelihood is analytically intractable. To the extent that Bayesian analysis has at all been 
conducted for this class of models it has relied on approximate numerical methods with unknown 
properties (Møller et al., 2005). Having to rely on approximate procedure is unsatisfactory if not 
because the extremely general results for MCMC that hold under very generous assumption do 
not apply and the appropriateness of any given approximation is likely to be very sensitive to 
what model is used and what data analysed and hence the appropriateness has to be decided on a 
case to case basis. This has an inbuilt contradiction in that it may prove difficult to assess the 
appropriateness when there is no procedure to evaluate the approximation against. 
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Here we summarise work in progress building on Koskinen (2006) to propose and investigate the 
properties of an ‘ ‘exact’ ’  or ‘ ‘pure’ ’  MCMC algorithm for performing Bayesian inference for 
models with intractable normalising constants. Because of the performance deficiency of the 
auxiliary variable MCMC algorithm (SISA) proposed by Møller et al. (2005) when applied to 
complex models we propose instead the use of The Linked Importance Sampler Auxiliary 
Variable (LISA) Metropolis Hastings for Distributions with Intractable Normalising Constants. 
We show how the poor mixing of the SISA can be understood if SISA is formulated as a regular 
MCMC with an embedded importance sampler that estimates the normalising constant in each 
step using only one sample point. We proceed to suggest that this makes it natural to replace the 
one-sample simple importance sample by more elaborate and proved more efficient variations of 
the importance sampler. There is a host of different very efficient importance sampler and 
Gelman and Meng (1998) brought recently brought to the attention of the statistical community 
the similarities and communalities between traditional importance samplers and methods that 
have long been used in the Physics literature. Unfortunately the ergodic theorem (Tierney, 1994) 
that ergodic estimator of the normalising constant converges to its mean almost surely as the 
number of sample points tends to infinity is of little use to use since we firstly have to take an 
estimate in each iteration of the MCMC and secondly because while the estimate of the 
normalising constant is simulation consistent the estimate of the acceptance ratio is not. It turns 
out however, that a specific importance sampler, the linked importance sampler (LIS), can be 
incorporate in the MCMC as an auxiliary variable when the space on which the importance 
distribution is defined is considered an extended sample space. This extended sample space is 
discrete but is of a quite complicated nature. However, we need to consider the variable defined 
on the extended state space explicitly in the sense that we need to save memory-consuming 
variables, the part of the LISA that concerns the auxiliary variable reduced to taking an 
importance sample. 
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We consider inference for a family of models for a variable X, taking values in a finite space �. 
These models are assumed to be indexed by a p � 1 vector ����� of real-valued parameters 
and that a model may be written with a probability mass function (pmf) of the form 
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1

)|( XX �
�

� q
Z

P � , (E-1) 

 
where )(X�q  is a real valued function of both the parameter vector and the variable X, and 

 

	
�

�
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U)(�� qZ  

 
is the normalising constant (or partition function according to these models' use in statistical 
mechanics, Strauss, 1986) that is only a function of the parameter vector �. 
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For all but the trivial parameterisations of the models considered here, the main obstacle to 
performing statistical inference is the fact that �Z  is analytically intractable. Although the 

function q may itself be relatively easy to evaluate, given � and X, �Z  is a sum over a set whose 

cardinality quickly becomes very big as a function of the number of coordinates or elements of 
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X. The sample space for an Ising model on an n � m grid, for example, has a cardinality of nm2 . 
An exponential random graph model (Frank and Strauss, 1986; Pattison & Wasserman, 1999; 
Robins, Pattison, and Wasserman, 1999; Wasserman & Pattison, 1996; Wasserman and Robins, 
2005, Snijders et al., in press; Hunter and Handcock, 2006) for the directed graph on n vertices 
has a sample space of cardinality )1(2 
nn . Many of the models considered here may be seen as 
special cases of the Gibbs distribution defined for different applications and sample spaces. 
Examples include Markov random fields (Besag, 1975; Cressie, 1993); Markov point processes 
(Ripley and Kelly, 1977; Møller and Waagepetersen, 2003b); and metric random graphs (Banks 
and Constantine, 1998). Non-Bayesian inference first relied on pseudo likelihood estimation 
(Besag 1974; Frank and Strauss, 1986; Strauss and Ikeda, 1990; Geyer and Thompson 1992) but 
because the pseudo likelihood estimates (MPLEs) thus obtained are suspect in certain 
circumstances and because of the generally higher efficiency of the maximum likelihood 
estimator (MLE) Geyer and Thompson (1992) proposed a Markov chain Monte Carlo (MCMC) 
scheme for performing approximate MLE inference. The MLE can be obtained using MCMC to 
get an approximation of the normalising constant (e.g. Geyer and Thompson, 1992; Gelman and 
Meng, 1998; Gu and Zhu, 2001) and for a few special cases the normalising constant can even be 
calculated exactly using an iterative scheme (Reeves and Pettitt, 2003). For a subset of 
distributions in the exponential family of distributions Lindsey (1974) proposed a method for 
fitting distributions to data in such a was so as the normalising constant does not have to be 
evaluated (Aitkin, 1995). The properties of the exponential family of distributions have also been 
utilised for MLE algorithms based on cumulants (Dahmström and Dahmström, 1993; Corander, 
Dahmström, and Dahmström, 1998, 2002) and the moment equation using either stochastic 
approximation (Snijders, 2002) or importance sampling (Crouch, Wasserman, and Trachtenberg, 
1998; Handcock, 2002; for the extension to the curved exponential family of distributions see 
Hunter and Handcock, 2005). 
 
Here we propose a Bayesian approach primarily because it gives us more nuanced information 
regarding the parameters than the ML estimation that typically only provides us with points 
estimates and standard errors. In addition to the wealth of information provided about the 
parameters by the posterior distribution, a Bayesian inference scheme also opens for ways of 
performing model selection (using posterior predictive p-values, Meng, 1994, or Bayes factors), 
handling missing data, etc. Another reason is that the Bayesian inference has somewhat more 
favourable properties. Although it is likely to have a small impact on the actual analysis, it is 
unclear whether the asymptotic results that are the main motivations for using ML estimation 
hold. Tentatively it looks as if the normal approximations of the distribution of MLEs and 
standard errors are reasonably good (as judged by the similarity of the point estimates and 
estimated s.e.s to the posterior distributions in Koskinen, 2004; for possible pitfalls when using 
MLEs for binary data see e.g. Mantel, 1987). That said, the MLE is typically used because it is 
consistent (i.e. given enough data the MLE will be arbitrarily close to the true parameter values) 
but with interdependent observations the asymptotic results are different (Strauss, 1986). 
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To be able to evaluate the likelihood function is as central to Bayesian analysis as it is to non-
Bayesian analysis. Given that non-Bayesian estimation previously relied on maximisation of the 
pseudo likelihood it is perhaps a natural approach to perform Bayesian inference using the 
pseudo likelihood rather than the true likelihood function as was done in Heikkinen and 
Högmander (1994). This transforms the problem into a regular inference issue and standard 
MCMC methods may be used but Heikkinen and Högmander (1994) acknowledged that it is 
unclear what distribution one samples from. Another way of avoiding having to evaluate the 
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normalising constant is for example by clever use of prior distributions (Besag et al., 1991) or 
limiting the analysis to finding a point estimate (Heikkinen and Penttinen, 1999). 
 
As mentioned above, many non-Bayesian methods exist that depend on MCMC approximation 
of the normalising constant. Since there are numerous efficient algorithms for numerically 
calculating (approximating) the normalising constant (Gelman and Meng, 1998), many MCMC 
schemes have been proposed for models with intractable normalising constants where a MCMC 
approximation to the normalising constant in the likelihood is substituted for the exact value. 
Normalising constants can be evaluated on a grid of parameter values and stored (Berthelsen and 
Møller, 2003) or estimated repeatedly in the course of the MCMC, using a sample from an 
importance distribution that is stored off-line (Koskinen and Robins, 2007) or regenerated on-
line (Koskinen, 2004a). 
 
Common to the previously employed Bayesian inference schemes are that it is hard to establish 
what properties MCMC that relies on approximations to distributions rather than the exact 
expressions has. The estimators of the normalising constant that are currently available are 
mostly constructed to estimate individual constants (or ratios of constants) and are not suited to 
repeated estimation. If one wishes to have one estimate or approximation of a normalising 
constant one is willing to allow for more iterations, to sacrifice efficiency for precision. 

 
Møller et al. (2005) recently proposed the first generally applicable ‘ ‘exact’ ’  MCMC algorithm 
for distributions with intractable normalising constants. By introducing an auxiliary variable 
defined on the same state space as data, they avoid having to deal with the normalising constant 
in evaluation of the likelihood explicitly. 
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If we for the model (E-1) have a prior distribution )(�� , the posterior distribution of � given the 
we have observed data X, is given by 
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is the marginal likelihood. The Metropolis-Hastings (MH) algorithm produces an MCMC sample 

N
k

k
0

)( )( ��  from the posterior distribution that can be used for exploring the posterior distribution. 

An iteration in the MH algorithm consists of proposing a move from the present point )(k�  to a 
new point *�  draw from a proposal density )|*( )(kq ��  and accepting this move, setting 

*)1( �� ��k  with a probability min(1,H), where H is the Hastings ratio 
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The marginal likelihood, that is typically very hard to evaluate, cancels in the Hastings ratio 
since it is only a function of data. Hence, drawing parameters from the posterior distribution in 
the MH reduces to a sequence of evaluations of the likelihood function (and prior distribution), 
something that in the standard case is easily done. Here we cannot evaluate the likelihood by 
assumption wherefore the cancellation of the marginal likelihood in the Hastings ratio is of little 
comfort to us. 

�����&� '�'�(
���
�
������"
 ����%��
�)�)


The problem in creating a MH (or indeed any type of MCMC) for the models considered here is 
that in the Hastings ratio 
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is that we cannot evaluate the ratio *

)( /)* ,( )( ��
�� ZZ k

k �� . To circumvent the need to evaluate 

)* ,( )(k���  while retaining the properties of the MCMC scheme, Møller et al. (2005) proposed 
to introduce an auxiliary variable Y, that has the same state space � as X, and to set up the MH 

to produce a sample N
k

kk
0

)()( ),( �Y�  from the joint posterior of Y and �. By letting Y have the pmf 

00
/)( �� Zq Y  for 0�  fixed, the Hastings ratio for the joint acceptance of * )* ,( Y�  becomes 
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While we see that the normalising constant 

0�
Z  in the pmf of Y cancel out, the problem of 

evaluating )* ,( )(k���  remains. The trick employed in Møller et al. (2005) was to firstly 

factorise the proposal density )|*(* )|*(),|** ,( )()()( kkk qqq ����� YYY �  so that Y is drawn 

conditional on the proposed new value of �. Secondly, the conditional proposal distribution for Y 
is set to ** /)( �� Zq Y . Doing this, the Hastings ratio simplifies to 
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and )* ,( )(k���  dissapears. Hence, with only a bit of algebra we have done away with the need 
to evaluate the normalising constant. We will call this algorithm SISA because of its relation to 
simple importance sampling, to be more closely described in section A.1.vi. 

�����*� +�"
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In the paper Møller et al. (2005) make the remark that for some models and parameter 
specifications the SISA has a tendency ‘ ‘get stuck’ ’  for long times. In the Illustrations section of 
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this paper we intend to show further examples of this when the SISA is applied to models with 
more complicated variable interaction than the autologistic model. In general however, there is 
cause for suspicion or at least some reasons to be cautious as to the performance of the SISA. 
 
Firstly, note that in order to accept a proposed move in SISA, we need to accept the update to 
both Y and �. This suggests that the acceptance rate of SISA should be considerably lower than a 
MH using the true Hastings ratio. Clearly the choice of distribution for Y is crucial to retain an 
acceptable acceptance rate but it is not immediately clear how the Hastings ratio in the SISA 
relates to the true Hastings ratio. Møller et al. (2005) only give some heuristic motivations for 
the choice of auxiliary density. Secondly, for the algorithm to work � has to be independent of Y 
given X and 0� , which would seem to have the interpretation that the posterior distribution is 

‘ ‘diffused’ ’  or spread out. 
 
For understanding the performance and (loosely speaking) efficiency of the SISA it is helpful to 
consider SISA in terms of importance sampling. If we inspect the part in the Hastings ratio in the 
SISA algorithm that pertains to the auxiliary variable and write 
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we see that );,(ˆ
0 Y���  is an estimator of ),( 0���  in the sense that 
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In other words, if MYY ,,1 �  is a sample from the importance distribution �� Zq /)(Y , the ergodic 

average 	��� );,(ˆ),( 0
1

0 mM Y����  is the simple importance sampler (SIS) estimator of 

),( 0��� . The SISA may then be seen as a Metropolis-Hastings algorithm where a SIS is run in 

each iteration to approximate the true Hastings ratio. Given some regularity assumptions (and 
assuming that the sample points MYY ,,1 �  are approximately independent) ),( 0���  is a 

simulation consistent estimator of ),( 0���  with variance � � MVar /);,(ˆ
0| YY ��� � . Without going 

into too much detail (some of which is treated in the following section), we may note that there is 
reason to be concerned about the fact that SISA employs SIS with only M = 1 sample point. 

�����-� ����������
��������
���
����
������
������
��
�����������

���������


Here we are going to briefly recap different kinds of importance samplers. We are not making 
any claims at this being an exhaustive account since there are many good reviews and 
introductions to importance sampling (e.g. Gilks et al., 1996, and in particular Gelman and 
Meng, 1998). 
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A.I I .7.a. Simple importance sampling 
As mentioned above, the simple importance sampler (SIS) estimator of the ratio of normalising 

constants ),( 0��� , is 	��� );,(ˆ),( 0
1

0 mM Y����  for MYY ,,1 �  is a sample from the 

importance distribution �� Zq /)(Y . Independence is not needed for the estimator to be 

simulation consistent but the variance will be larger due to autocorrelation. SIS is an intuitive 
and straightforward way of estimating ratios of normalising constants and we only really require 
that the support of Y under the different distributions defined by � and 0�  is the same, that 

0�
q  

dominates �q . In most applications for finite supports this condition is met but it is common for 

the supports of 
0�

q  and �q  to be well separated in the sense that there is a region in � which has 

a very low probability under both 
0�

q  and �q  that separates the regions of high probability under 

the respective distributions as illustrated in Figure 4. 
 

 
Figure 4 Two suppor ts that are well separated 

 
This situation means that we are rarely going to get Y that have high probability under 

0�
q  when 

�q  is used as the importance distribution. This typically manifests itself as high or infinite 

variance for ),( 0��� . Note however that this also applies to less extreme cases as long as the 

‘ ‘overlap’ ’  between distributions is too small. 
 
In addition to the high variability and instability of SISA due to the fact that M = 1, in the course 
of running SISA we have to perform many SIS for many different values of � . Consequently 
there is nothing to assure us that 

0�
q  when �q  are close to eachother other than that 0�  is chosen 

so that most proposed values of �  are close to 0� . 

A.I I .7.b. Bridged importance sampling 
To remedy the deficiency of SIS when the supports are separated we may introduce a bridging 
distribution between 

0�
q  when �q  connecting their respective supports. We do this by expanding 

),( 0���  using a bridging distribution indexed by a parameter 2/1�  
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With a bridging distribution 
2/1�

q  we write the estimator ),(),(),( 02/12/10 ������ ���� . Hence, 

even if the supports of 
0�

q  and �q  are disjoint, there is some overlap between the supports of 
0�

q  

and 
2/1�

q , and between 
2/1�

q  and �q . as illustrated in Figure 5. 

 

 
Figure 5 Two disjoint suppor ts with the suppor t of a br idging distr ibution linking them 

 
In practice we may be required to have more than one bridging distribution but the principle 
remains unchanged. 

A.I I .7.c. Path sampling 
Gelman and Meng (1998) alerted the statistical community to the affinities between existing 
importance samplers in the statistical literature and various methods used in physics for 
calculating ratios of normalising constants. In particular path sampling is an elegant 
generalisation of bridged importance sampling. Consider extending the number of bridging 
distributions to ‘ ‘uncountably many’ ’  bridging distributions. We could for example have 
bridging distributions indexed by parameters )(t�  for a smooth mapping � � ��1,0:�  that is 

linear 10 )1()( ��� ttt 
�� . The distributions given by t would then connect 0)0( �� �  with 

1)1( �� �  in a continuous fashion. The estimator of the logarithm of ),( 01 ���  may then be 

derived from the path sampling identity: 
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The most straightforward estimator is suggested by the fact that the RHS of the path sampling 
identity looks like the expectation of the quantity in the integrand with respect to a random 
variable t �R(0,1). Hence, we may take a sample Ktt ,,1 �  from a uniform distribution and for 

each )( ut�  we draw Y and calculate the quantity in the integrand and in the end we average these 

quantities. 

A.I I .7.d. Linked importance sampling (L IS) 
Neal (2005) propose a method he called linked importance sampling (LIS) that combines the 
merits of the SIS (being unbiased) with the advantages of using bridging distributions while not 
requiring more than one independent realisation from an importance distribution. The path 
sampler, though being very efficient, requires that each sample point used is independent of the 
other given the parameters. When we use MCMC to generate sample points in the data space this 
translates into having to wait for the MCMC to burn in between each sample point. LIS is best 
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describes a sequence of MCMC samples each from different distributions but that are linked (as 
in share a realisation) with each other. The principle is illustrated in Figure 6. In order for the 
estimator calculated in LIS to have the right properties we need to choose the starting points of 
the MCMC samples in a specific way. In addition we also have perform MCMC sampling 
forward in time as well as backwards in time. 
 

 
Figure 6 An illustration (based on Figure 1 in Neal, 2005) of LIS that star ts in the green ver tex on the left and 
ends in the green ver tex on the r ight 
 

A.II.7.d.i. Simulating forwards and backwards 
When we draw sample points Y from �� Zq /)(Y  using MCMC we usually simulate forwards 

with Markov chain transition probabilities �T , which may be schematically represented as 

 
)1()1()()( ),( �� �� tttt T YYYY �  

 
but we may also simulate backwards 
 

)()1()()1( ),( tttt T YYYY �� 


� , 

 
using the reverse transition probabilities �T . Most of the time we are dealing with reversible 

MCMC in which case ),(),( XYXY �� TT � . 

A.II.7.d.ii. The sample 
The estimator is based on K sample points from m different distributions 
 

)(
1

)1(
1 ,, KYY �  

)(
2

)1(
2 ,, KYY �  

�  
)()1( ,, K

mm YY �  

 
drawn using Metropolis-Hasting transition probabilities )(tT�  and )(tT � , for  
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10 )(,),1(,)0( ����� �� m� . 

A.II.7.d.iii. Connecting the samples 
The m samples are connected in points 
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A.II.7.d.iv. Choosing connection points 
We have now explained how to produce the m sample chains and how to link them to eachother. 
We now proceed to explain how to choose the connection points. After 1!  is drawn uniformly at 

random, the starting state )(
1

1!Y  is chosen according to 
00

/)( �� Zq Y . The first chain is simulated 

as described above. To choose which of the K sample points that should provide the link to the 
next chain, we choose j  with probabilities 
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and insertion points j!  uniformly on { 1,...,K} . 

A.II.7.d.v. The estimator 

Given a sample ),,( ! Y , an estimate of ),( 10 ���  is given by 

 



 19 

"
	
	

�
� ��

� ��
m

j
K

i

i
jjj

K

i

i
jjj

LIS
w

w
r

1
1

)(
1)(),1(

1

)(
)1(),(

)(

)(
),,(ˆ

Y

Y
Y

��

��! . 

 

A.II.7.d.vi. Why LIS works - a tentative proof 
Here we outline a proof of the unbiasedness (simulation consistency) of LIS, the chief aim of 
which will be for understanding how LIS is incorporated in the MCMC algorithm LISA. Details 
of the proof are given in Neal (2005). 
 
Given a fixed starting point )(

1
1!Y , the sampling scheme outlined above defines a distribution 

 

0

1

0

10

/)(

),,(
)(

1

,

�
!

�

�� ! 

Zq

F

Y

Y#
 

 

on $ % $ %" �
��

m

j

K KK
1

,,1,,1 ��� , where 
01010

/),,(),,( ,, ����� ! ! ZPFF YY �# . The distribution 

),,(
10 , ! �� YFP  is simply that which is implied by drawing linking states, insertion points and 

simulating forwards and backwards 
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For each ),,( ! Y  we may also define the algorithm in reverse, i.e. starting in )( m

m
 Y , treating this 

as )(
1

1!Y  and proceeding as above but swapping roles for !  and  . This analogously defines a 

pmf ),,(
01 , ! �� YBP . 

 
It can be shown using a little algebra that the LIS estimator can be written 
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Now, the joint distribution ),,(

10 , ! �� YF#  of ),,( ! Y  and )(
1

1!Y  simulated according to the 

forward algorithm is simply 
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Hence, if we take ),,(

10 , ! �� YF#  to be the importance distribution for drawing a sample ),,( ! Y  

we see that ),;,,(ˆ 10 ��! YLISr  is an estimator of ),( 10 ���  in the sense that 
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The question is now whether we can improve on the performance of SISA by getting a better 
estimate of )* ,( 0���  than the SIS with M = 1? There are a few aspects of the importance 

samplers presented that prevents an immediate incorporation of them in the SISA. For example, 
here ),(),( 00 ���� ���  only as M gets large and we have to get an estimate in every iteration. 

If the distributions indexed by �  are close to 0�  are separated there could be a severe bias or 

infinite variance. As we have seen this can be remedied by introducing bridging distributions but 
in general for the importance sampler, while for the Hastings ratio 
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we typically have that 
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Consequently, if we use importance samplers indiscriminately we may accept updates in the 
Metropolis-Hastings with on average wrong probabilities. 

A.I I .8.a. LISA - extended state space 
In SISA we performed draws from the joint distribution of the parameters and the auxiliary 
variable Y � �. Consider now as an auxiliary variable ),,( ! Y  � 
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The linked importance sampler (LISA) MCMC is a Metropolis-Hastings algorithm that performs 
draws from the joint distribution 
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It is straightforward to show that �  has the desired marginal distribution 
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The Hastings ratio still contains the ratio )* ,( )(t���   
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where we for now denote by g a generic proposal distribution. Assume now that we conditional 
on *�  propose 
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the ratio )* ,( )(t���  cancel in H 
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and furthermore, by the definition of )* ,;,,(ˆ 0��! YLISr  
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so that the Hastings ratio reduces to 
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Note that SISA can be seen as a special case of LISA with K = 1 and m =1, i.e. when we only 
produce the initial state )(

1
1!Y  and when we have no bridging states. 

A.I I .8.b. LISA in summary 
We have proposed an exact or ‘ ‘pure’ ’  Metropolis-Hastings algorithm for drawing paramters 
from the posterior given data that follows a distribution with an intractable normalising constant. 
The MCMC is ‘ ‘pure’ ’  as long as we are able to draw (an approximate) a sample point from our 
data model. 
 
The algorithm LISA is tunable having two constants K and m that may be set by the researcher to 
tune the mixing of the Markov chain. This is a notable improvement on SISA, for which there 
was very little scope for improving mixing. Since LISA employs bridging distributions it is not 
as sensitive to the choice of 0�  as SISA. 

 
Although LISA may give the impression of being complicated to implement and require a lot of 
extra computational time as compared to SISA, LISA only requires sampling in the data space 
using M-H and the evaluation of discrete variable probabilities. LISA only requires mK �  extra 
M-H updating step (for the auxiliary variable) as compared to SISA. Note that a procedure for 
sampling in the data space is almost always required for the models considered here in order to 
make any sort of inference. 
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In order to illustrate the performance of LISA, we compare LISA and SISA in inference for 
simulated data from the Ising model as well as employ LISA to the inference for models and data 
with more elaborate interdependence structure. 
 
The Ising model is used for illustration since it is a well known model that is reasonably well 
understood. In addition, since the Ising model was used for illustration in Møller et al. (2005) it 
makes for an intuitive point of departure. Having established that LISA compares favourably 
with SISA in the case of the Ising model we proceed to investigate its performance for models 
with more intricate dependence structure. The social influence model proposed by Robins, et al. 
(2001) is very similar to the Ising model but the dependence structure is more complicated and 
less regular. Because of this the influence of auxiliary distribution and the choice of K and m on 
the mixing of LISA are more accentuated in the case of the social influence model. Finally, we 
shall illustrate the algorithm for inference for the (Curved) exponential family of distributions.  

A.I I .9.a. Ising model on 50����50 gr id 
A classic case of an autologistic model is the Ising model (Besag, 1972; Cressie, 1993). It is 
assumed that you have points on grid with binary marks. The Ising model on a binary m � n 
lattice has been used to model how the charges of particles interact an in the simplest case it is 
assumed that the particles can have either of two spins, up or down. The spin of a given particle 
depends on the general tendency towards spin up and the spins of its neighbours on the lattice. 
We define the model for ),,1, and ,,,1:( njmixij �� ���X , where for the elements 

$ %1,1
�ijx . The pmf is defined as in (E-1) with 

 
)exp()( 1100 VVq ��� ��X , 
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When generating data according to the model we have to rely on MCMC since there is no direct 
way drawing data from an Ising model. In the case of some autologistic models (and the Ising 
model in particular), it is possible to ‘ ‘sample perfectly’ ’  from the model, to take as an output a 
state that we know have been produced after the Markov chain has converged to the target 
distribution. Here we have used Wilson's (2000) modification to the Propp and Wilson (1996) 
algorithm. 
 
A realisation for a 50�50 lattice with T)3.0,0(��  is given in Figure 7. 
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Figure 7 A realisation for  an Ising model on a binary 50����50 lattice with T)3.0,0(�� . ‘ ‘Spin-ups’ ’  are 
indicated by dots. 
 
To illustrate how the chains )()1( ,, K

jj YY �  are connected for mj ,,1�� , we have plotted the 

sufficient statistics 0V  and 1V  for m = 5 chains in Figure 8. In the right-hand panel we see that 

)1(�  and )5(�  produce radically different numbers of same-site ( 1V ) pairs. The bridging 

distributions make it possible for the sampler to incorporate values of 1V  that are probable under 

)5(�  but highly unlikely under )1(� . The starting point )(
1

1!Y  is generated (using the Prop 

Wilson algorithm) from an Ising model defined by T)3.0,0(�� . For the right hand panel, 

showing the traces of ( 1V ), we expect the chains to progressively move downwards since the 
parameter )1(�  corresponding to the number of same spinn sites is gradually lowered. The state 

connecting the first chain with the second is )550(
1

1� Y , with 1V =1716. This state is then set as the 

starting state )10(
2

2 �!Y , in the second chain etc until the last chain is started in )714(
5

5 �!Y , whose 

1V =1450 is considerably lower than the overall level of the number of same spinn sites in the 
first chains. Thus the bridging chains have managed to link the supports of the two extreme 
distributions defined by )1(�  and )5(� . 
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Figure 8 A linked impor tance sample for  an Ising model on a binary 50����50 lattice where T)3.0,0()1( ��  

and T)2.0,1.0()5( �� . Circles mark the linking states. 

 
Since )* ,;,,(ˆ 0��! YLISr  has lower variance than the SIS estimate, we expect the variation in 

LISA to be smaller than in SISA. Additionally, since SIS is biased when the proposed parameter 
value is far from 0� , we expect SISA to get stuck in bad estimates of the ratio of normalising 

constants )* ,( 0���  occasionally. When these two issues combine we expect them to manifest 

themselves in a low acceptance rate and hence large sample autocorrelations even for big lags. 
 
To investigate differences in performance we simulated data using T)1.0,2.0(��  and 

T)3.0,0(��  and binary 50�50 lattice. In Table 1 some summaries for LISA with different 

choice K and m are given. In all algorithms the MPLEs have been used as 0� . Increasing K and 

m drastically reduces the sample autocorrelations of the Markov chain. The lag 50/100 SACF 
efficiency is a measure of the gain in efficiency scaled by the number of extra iterations required 
to calculate the LIS estimate. Note that this is conservative in favour of SISA since one 
Metropolis-Hastings updating step in the LIS algorithm corresponds to one function evaluation 
(the change in sufficient statistics as one element is change into its oposite) but one iteration in 
the burn-in phase required in the perfect sampling scheme for drawing )(

1
1!Y  requires 5 function 

evaluations (the maximal and minimal chain in the main chain and the criterion chain 
respectively plus the update of the present state). The number of extreme proposals as judged by 
Prop. min(1,H) < e-10 deserves closer attention. This reflects, not that some proposed parameter 
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values hade a very low posterior probability, rather it reflects the bias and variation of the SIS in 
SISA. In the applications to come low acceptance probabilities sometimes cause the SISA to 
become stuck in some states for a long time. 
 
 
 

K = 1 
m = 1 

K = 3000 
m = 5 

K = 7000 
m = 9 

 
0� . 1� . 0� . 1� . 0� . 1� . 

True  0.2 0.1 0.2 0.1 0.2 0.1 
MPLE. 0.196 0.109 0.196 0.109 0.196 0.109 
Proposal std 0.005 0.005 0.005 0.005 0.005 0.005 
Posterior mean  0.2006 0.1053 0.1994 0.1054 0.1994 0.1051 
Posterior std 0.0214 0.0142 0.0217 0.0144 0.0221 0.0149 
Lag 50 SACF 0.6464 0.5124 0.5262 0.3619 0.4596 0.3126 
Lag 100 SACF 0.4336 0.3288 0.2923 0.1945 0.2011 0.1088 
Mean acc. prob 0.3931  0.5890  0.7249  
Prop. min(1,H) 
< e-10 

0.0178  0.0006  0.0000  

Ave. iter 5.6�104   5.6�104  5.6�104  
Lag 50 SACF 
efficiency 

1 1 1.0558 1.0310 0.7185 0.6627 

Lag 100 SACF 
efficiency 

1 1 0.9844 0.9455 0.6631 0.6241 

       
       
Table 1 Compar ison of per formance for  different choices of K and m in LISA for  estimating parameters for  
the Ising model (Lag 50/100 efficiency is 1-SACF/(Ave.iter+Km) relative to K =1 and m =1) 
 
In Figure 9 the autocorrelations of the entire MCMC samples for SISA and LISA (K = 3000, m = 
5 and K = 7000, m = 9) are compared. The increase in efficiency when K = 3000 and m = 5, as 
compared to SISA is substantial but the marginal increase when we increase K to 7000 and m to 
9 is smaller. 
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Figure 9 Compar ing the sample autocorrelation functions (SACF) for  SISA and L ISA(dashed K = 3000, m 
=5; dotted K = 7000, m = 9) for  data simulated from an Ising model on a binary 50����50 lattice with 

T)1.0,2.0(�� . 

 

A.I I .9.b. The social influence model 
When studying for example binary educational outcomes it is common to take interdependence 
between response variables as a consequence of respondents sharing teachers, schools, etc, into 
account using random effects. Many researchers have however pointed to the importance of 
taking peer influence into account. Robins, et al. (2001) proposed a model that uses the 
empirically collected interaction structure to model how outcomes for (for example) pupils may 
depend on the outcomes for their friends. There are some obvious similarities to Ising but the 
interdependence structure is given by empirical observations, not homogeneous and usually quite 
complicated. 
 
For a set of actors },,1{ nN �� , we let the binarised masculinity variable (0=gender equity 
attitudes, 1=male dominance attitudes; for description of data and substantive motivation see 
Lusher, 2006) be the response variable Niix �� )(X  in a model for which the pmf is defined as in 

(E-1) with 
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where zi1 is a binary covariate capturing whether actor i belongs to the dominant culture 
(1=dominant Anglo-Australian ethno-cultural background; 0=marginal ethno-cultural 
background); zi2 is the SES of actor i based on postcode (here standardised); zi3 is fathers's 
occupational status of actor i (standardised); ); zi4 is mother's occupational status of actor i 
(standardised); xij is 1 if either i nominates j as a friend or j nominates i as a friend. 
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Trace plots for the parameters in this model are given in Figure 10 and summaries and 
comparisons with the MLEs and MPLEs are given in Table 2. The importance of the choice of 

0�  and K and m is visible in how freely the (3 first) parameters move in the state space varies. It 

is clear from the marginal histograms that the sample using MPLE, K = 1 and m =1 is not very 
useful. As K and m increase, the mixing gradually improves and for K = 2000 and m = 7 the 
chain moves well in the state space (possibly with the exception of a run around iteration 
40,000). When the MLE is used in the auxiliary distribution there is a marked improvement for 
all algorithms but SISA displays the characteristic ‘ ‘ freezing’ ’  - SISA seems to be mixing 
perfectly well for the first 20,000 or so iterations, after which it gets stuck for more than 50,000 
iterations. 
 
For the influence model, it is not straightforward to construct a monotonic chain such that we 
may implement a perfect sampling scheme. Instead we have relied on the rule of thumb 100n for 
the length of the burn as is suggested by Snijders (2002). A number of post-hoc tests (based on 
simulation in the data space with relatively  ‘ ‘extreme’ ’  values of � ) confirm that this burnin is 
sufficient. 
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Figure 10 Compar ing effect of choice of auxiliary distr ibution and tuning parameters in LISA: Trace plots 
(and histograms) for  3 of the parameters in an influence model fitted to Lusher 's (2006) 106 school data when 
auxiliary distr ibution in LISA uses MPLE (left hand panels; value indicated by solid line and approximate 95 
confidence interval by dashed lines) and MLE (r ight hand panels; value indicated by solid line).  
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The (approximate) confidence interval for 3�  and 2�  given by the pseudo likelihood analysis and 

maximum likelihood suggests that the corresponding two effects are significant. The (exact) 
Bayesian analysis is however less conclusive (activity does not seem to have an effect) but still 
lending some support to contagion: the posterior probability that 03 /�  given data, i.e. that there 

is a contagion effect, is 0.9932. No contaigion effect is not includced in the 95 highest posterior 
density region (95 HPD) but in the 99 HPD. Point estimates and measure of uncertainty are very 
similar for the ML approach and the Bayesian approach and the differences are largely to be 
attributed to the skewness of the posteriors. 
 
  MPLE MCMCMLE Posterior 
  EST SE EST SE MEAN STD 95 HPD 99 HPD 
Intercept 

1�  0.11 0.596 0.12 0.504 0.14 0.56
0 

-1.15 1.45 -1.42 1.81 

Activity 
2�  -0.24 0.083 -0.13 0.046 -0.11 0.05

5 
-0.23 0.02 -0.26 0.06 

Contagion 
3�  0.45 0.123 0.29 0.067 0.24 0.08

2 
0.04 0.42 -0.03 0.47 

Dominant 
culture 

4�  -0.03 0.472 -0.39 0.427 -0.44 0.45
1 

-1.44 0.57 -1.74 0.82 

SES 
5�  0.10 0.227 0.20 0.215 0.23 0.22

3 
-0.27 0.72 -0.38 0.83 

Dad 
6�  -0.16 0.220 -0.17 0.210 -0.19 0.21

9 
-0.69 0.30 -0.83 0.42 

Mum 
7�  -0.05 0.224 0.08 0.206 0.08 0.21

5 
-0.41 0.57 -0.54 0.71 

Table 2 Point estimates for  influence model fitted to Lusher 's (2006) 106 school data 
 

A.I I .9.c. An ERGM 

While the interaction pattern of the sites in an Ising model is described by a binary m � n lattice, 
that is a regular graph (with a difference in the degrees of boundary vertices), which implies 
certain convenient conditional independencies, there are models that have a much more 
complicated dependence structure. An example of this is the exponential family random graph 
(ERGM) distributions for social networks introduced by Frank and Strauss (1986) and further 
extended in for example : Pattison & Wasserman (1999); Robins, Pattison, and Wasserman 
(1999); Wasserman & Pattison (1996); Snijders et al. (in press). 
 
We begin by fitting a special case of an ERGM where we model a collaboration network on a set 
of 36 actors. We let the set of actors be represented by a set },,1{ nN ��  of vertices and let the 
colaboration network be represented by a random edge set on N with adjacency matrix X, the 
elements of which are 
 

�
�
�

�
otherwise0

actor  with escollaborat actor  if1 ji
xij . 

 
We assume that it is not meaningful to speak of actors collaborating with themselves wherefore 
the main diagonal is all zeros. The pmf is defined as in (E-1) with 
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where the zk´s are functions of the adjacency matrix and a set of fixed vertex level attributes. In 
this particular example we follow the specification in Hunter and Handcock (2005) and for the 
attributes ai (seniority of actor i in terms of rank), bi (binary indicator of role of actor i), ci (sex of 
actor i), di (office location of actor i), (for more details about the model and the data set see e.g. 
Lazega, 2001; Lazega and Pattison, 1999; and Snijders et al., in press): 
k Effect )(Xkz  

1 Activity/popularity 	
0 ji

ijx  

2 Main effect of seniority )( ji
ji

ij aax �	
0

 

3 Main effect of practice )( ji
ji

ij bbx �	
0

 

4 Homophily practice )( ji
ji

ij bbx �	
0

1  

5 Homophily sex )( ji
ji

ij ccx �	
0

1  

6 Homophily office )( ji
ji

ij ddx �	
0

1  

Here 1 denotes the indicator function. 
The sociogram of the data is depicted in Figure 11. 

Collaboration network among 36 lawyers in a 
New England law firm (Lazega, 2001)

Boston office:

Hartford office:

Providence off.:

least senior:

most senior:

 
Figure 11 Lazega's lawyers 
 
Since the edges are conditionally independent conditional on the attributes and parameters, it is 
easy calculate the normalising constant analytically as 
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for this model. In this expession �
ijX  is the adjacency matrix that is identical to X  for all 

elements but may differ in ),( ji  that is set to 1. Analogously 

ijX  is the adjacency matrix that is 

identical to X  for all elements but may differ in ),( ji  that is set to 0. 
 

 

  
Figure 12 Trace plots for  (from left to r ight, top to bottom) SISA, LISA(K = 1000, m =5), LISA(K = 1000, m = 
10) for  a dyad independent ERGM fittend to Lazega's (2001) New England Lawyers collaboration network. 
 
As seen in Figure 12 the mixing improves markedly with LISA (here we will include a table with 
estimates, SACF, etc). What is more interesting is that since can evaluate the normalising 
constant analytically, we are able to study the bias in SISA stemming from the biasedness of SIS. 
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Figure 13 Distr ibution of bias for  SISA, L ISA(K = 1000, m =5), and LISA(K = 1000, m = 10) for  a dyad 
independent ERGM fittend to Lazega's (2001) New England Lawyers collaboration network. 
 
Figure 13 is an illustration of the difference between the true )* ,( 0���  and that estimated by 

SIS and LIS. The distributions are those of )* ,(/)* ,(log 00 ���� ��  under the marginal 

distribution of *�  
 

����� d)|()|*(
 Xg . 

 
The worrying feature about SISA is the difference often is extremely small, meaning that in this 
particular example the ratio )* ,( 0���  is underestimated. When a *�  is accepted by SISA 

because )* ,( 0���  is underestimated is when the algorithm gets stuck. 

A.I I .9.d. A CERGM 
We now proceed to show how LISA performs when we increase the complexity of the 
dependence structure on data. Following Hunter and Handcock (2005) we introduce the 
geometrically weighted shared partner statistic (GWEPS), which was derived as the alternating 
triangle statistic  
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from the partial dependence assumption by Snijders et al., (in press). When 1  in the alternating 
triangle statistic is allowed to be a free parameter the model containing both GWEPS and 
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1� log8 �  belongs to the curved exponential family of distributions. The results for fitting the 

model to Lazega's (2001) New England Lawyers collaboration network using LISA are 
illustrated in Figure 14. The visual impression is one of good mixing. 

 
Figure 14 Trace plots with histograms for  a model with GWEPS fitted to Lazega's (2001) New England 
Lawyers collaboration network with LISA(K = 2000, m = 7) 
 

A.I I I . Bayesian analysis of (curved) exponential family distr ibutions for  
graph 

We consider here a probability model for the edge set of a graph that is commonly referred to as 
the exponential random graph model (ERGM), and its extension, the curved ERGM. Although 
some issues remains to be resolved when it comes to how to specify the ERGM, this class of 
models holds some promise when it comes to capturing network processes. Currently the 
favoured methods for statistical inference are Markov chain Monte Carlo (MCMC) Maximum 
likelihood estimate (MLE) and an MCMC implementation of the Robbins-Monroe algorithm, 
both of which rely on the properties of the method of moments for exponential family 
distributions. We propose instead to take a Bayesian approach that (i) yields clearly defined 
answers in terms of probabilities (the asymptotic properties of the MLE are not fully understood 
in the case of the ERGM); (ii) offers a rich picture of uncertainty (the MLEs and approx. s.e.'s do 
not adequately reflect the uncertainty stemming from the pronounced dependencies between 
observations); (iii) makes allowances for penalising "degenerate parts" of the parameter space 
using proper subjective prior distributions; (iv) provides us with a natural and probabilistic 
approach for handling missing data; (v) offers a principled and probabilistic procedure for 
performing model selection; (vi) provides us with posterior predictive distributions; etc. How to 
implement a Bayesian inference scheme for the ERGM is, however, far from straightforward.  
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It is clear that in all but trivial cases we have to rely on numerical methods. It is probably fair to 
say that as far as numerical methods go, MCMC is the gold standard. Thus far, however, efforts 
at designing an MCMC algorithm for the ERGM has been hampered by the fact that it is 
typically not possible to evaluate the normalising constant (the partition function) in the 
likelihood function. Although the (pure) MCMC does not require that we can evaluate the 
normalising constant in the posterior distribution it usually requires that we can evaluate the 
likelihood function. Recently an auxiliary variable MCMC (SISA; our acronym) was proposed 
that circumvented the need to evaluate the partition function. The key being to introduce an 
auxiliary variable defined on the same state space as data. However, while SISA performs 
sufficiently well in order for it to be useful for "simpler" models like the Ising model, it seems as 
if it runs into serious problems when applied to the ERGM. It is not only a question of whether 
the mixing is good or not, rather it is a question of whether it mixes at all. The reasons for this 
being so are easily understood when the SISA is understood in terms of the Simple Importance 
Sampler (SIS). We propose a solution (LISA) where the (single) auxiliary variable is replaced by 
an auxiliary variable defined on an extended state space. Whereas SISA may be seen as an 
algorithm that performs a one-sample point SIS in each iteration of the Metropolis-Hastings 
sampler, LISA performs a bridged (linked) importance sampling (LIS) estimation in each 
iteration, with the number of bridging distributions and sample points chosen to tune mixing. 
The extra number of calculations necessary to perform LISA as compared to the SISA is 
negligible. We illustrate LISA when applied to the analysis of the Ising on a 50x50 grid and a 
network for a New England law firm. 
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This paper will use the results on LISA in Koskinen (2006; and paper outlined in previous 
section) and present them to in a less technical way with an emphasis on the application to social 
network analysis. We will go into more detail regarding specific research issues that arise in 
social network analysis and in particular when exponential and curved exponential family 
distributions are fitted to sociometric data. Much effort will be put on interpretation of results 
and in doing this we will treat in some detail posterior predictive distributions in order to 
interpret models in terms of observables. This approach also extends the alternative goodness of 
fit that is proposed in Koskinen et al. (2007b). 
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A.I I I .2.a. An MCMC importance sampler  
Koskinen, (2004a) proposes to use a Bayesian version of the MCMC scheme of Geyer and 
Thompson (1992). For multivariate ERGMs, Koskinen and Robins (2007) suggested a similar 
approach. For drawing a sample )()()1( ,,,, Hh ���

��  with "non-informative" prior �(����)=1, from 
the posterior distribution 
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they used the Metropolis-Hastings sampler suggested for inference for exponential random 
graphs in Koskinen (2004a) but with an alternative method for calculating the Hastings ratio in 
the updating steps for the parameters. Similar to the Maximum likelihood inference schemes 
suggested in Geyer and Thompson (1992) as applied to exponential random graphs (and curved 
exponential family models for networks, Hunter and Handcock, 2006), a single importance 
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sample Y1,..., YN is drawn from an exponential random graph model conditional on a provisional 
point estimate ����0, that is used for approximating the Hastings ratio  
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where the equality ��  holds in the limit as N gets large (given some regularity conditions and 
caveats, Handcock, 2003). The importance sampler parameter ����0 may have to be updated a few 
times and the algorithm repeated with the updated value of ����0. An alternative approach is 
suggested in Berthelsen and Møller (2003) where estimates of the normalising constant for 
different parameter values on a grid are used in the Metropolis-Hastings. This does however 
require that the grid points are chosen beforehand which could prove tricky when the number of 
parameters is large. 
 
In Table 3 three models with varying degrees of interdependence are fitted to the marriage and 
business networks of Padgett’s (Padgett and Ansell, 1993) 15'th century Florentine families 
(multirelational stars with parameters 2b, 2d and 2c corresponds to the structures b, d and c in 
Figure 15 respectively and analogously for triangles e and f; Marriage ties and Business ties 
taking the role of dashed and full lines respectively) 

 

(1) 

(k) 

(1) 

(k) 

(a) (b) (e) 

(c) (d) (f) 

(g) (h) 

 
Figure 15 Some multirelational graph statistics  

 



 35 

 Conditional Multivariate dyad Multivariate higher 
order 

 
Bayes�̂  SD(�) 

Bayes�̂  SD(�) 
Bayes�̂  SD(�) 

Edges business, �1 -3.69 0.581 -3.31 0.673  -4.37 1.020 
Alt. tri business, �2 0.87 0.298 0.68 0.361 1.42 0.535 
Edges marriage, �3   -2.03 0.450 -2.18 0.532 
Alt. tri marriage, �2   -0.11 0.299 -0.003 0.353 
(a) Edge sim 3 2.32 0.655 2.05 0.738 3.01 0.880 
Stars 2b     0.17 0.235 
Stars 2d     -0.05 0.073 
Stars 2c     -0.04 0.081 
Triangles 3e     -0.63 0.722 
Triangles 3f     -0.08 0.666 

Table 3 Summar ies of poster ior  distr ibutions of parameters in the ERGMs fitted to the business and 
marr iage networks of Padgett's Florentine families. The lables (b) through (f) refer  to respective subgraph 
counts of Figure 3. Point estimates are the MCMC estimators of the poster ior  expected value of the 
cor responding parameter  given data. 
 
The appropriateness of this approximation to the posterior distribution is something that arguable 
has to be decided on a case to case basis. We have seen in the treatment of LISA that the choice 
of importance distribution for ERGMs may have a large impact on the estimate of the estimated 
value of the likelihood function. 

A.I I I .2.b. Laplace approximation 
Koskinen, Wang, Lusher, and Robbins (2007) approximate the posterior distribution by a 

multivariate normal distribution ))ˆ(,ˆ(| 1
� MLEMLEp IN
��

X
�

, where the MLE and information 

matrix are readily available from standard SNA computational packages. The chief aim of the 
approximation was to supply a quick and easy procedure for drawing adjacency matrices from 
the (approximate) posterior predictive distribution (to be used for goodness of fit). 
 
Some preliminary results suggest that the normal approximation might not be bad contrary to 
what one would expect from the high degree of interdependency and the dichotomous data (c.p. 
Hauck and Donner, 1977; Zellner. and Rossi, 1984). However, there are instances when the 
departure from normality may be small (in, say, covariance norm) but have great impact on the 
properties of the distribution. One property of the distribution that lends itself to intuitive 
interpretation is in terms of the posterior predictive distribution and, more particularly, the types 
of graphs that the distribution produces. In the left hand panel of Figure 16 the probability of a 
degenerate graph (Handcock, 2003) is plotted as a function of the edge parameter and the 
alternating k-triangle parameter for a network with 7 nodes. It is clear that there is a ‘ ‘stable’ ’  
region in the parameter space roughly centred over the origin. The two right hand panels of 
Figure 16 superimpose the approximate and exact posterior on the picture of degeneracy for two 
different realisations of the sufficient statistics. The departure from normality (in both cases) that 
causes problems is the ‘ ‘ tongue’ ’  that protrudes from the lower right hand parts of the contours - 
whereas the exact posterior is mostly contained within the non-degenerate region, the ‘ ‘ tongue’ ’  
extends into the degenerate region. This is most visible in the bottom panel. 
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Figure 16 Degenerate edges and k-tr iangle graphs for  7 nodes: Probability of degenerate graph as a function 
of parameters (left panel); with super imposed poster ior  distr ibution (solid) and approximate poster ior  
distr ibution (-4444) given 11 edges and 11.25 k-tr iangels (1111=2) (top r ight); with super imposed poster ior  
distr ibution (solid) and approximate poster ior  distr ibution (-4444) given 11 edges and 15.5 k-tr iangels (1111=2) 
(bottom r ight) (Figure reproduced from Koskinen, Wang, Lusher , and Robbins, 2007). 
 
As in the case of the MCMC importance sampler approximation, the appropriateness of the 
approximation is hard to establish on a general basis. In any case, in order to evaluate the 
approximations we need an exact inference scheme as our criterion. 

�������� 3��
4���5���
�	
���5��� �������
��
�6
���
�����


Many authors have testified to the difficulty of sampling graphs from exponential family of 
distributions for graphs (c.f. Snijders, 2002; Handcock, 2003). When implementing LISA, 
however, we assume that we may produce and unbiased draw )(

1
1!Y  of from an arbitrary ERGM. 

Typically the rule of thumb 100n2 (Snijders, 2002) is a sufficiently long burnin time for a 
Metropolis-Hastings sampler to ‘ ‘converge’ ’ . For certain parameterisations and parameter values 
the MH may take very loch to settle and hence the produced )(

1
1!Y  may depend heavily on the 

choice of the initial state. An intuitive way of studying the time to convergence is by inspecting 
trace plots with parallel chains with overdispersed initial states. Using this logic, an 
approximately, or a pseudo, perfect sampling scheme may be implemented for ERGMs. The 
basic ingredients are the same as in Wilson's (2000) modification to the Propp and Wilson (1996) 
algorithm with the primary difference being that the stopping rules are based on approximate 
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coalescence of chains projected onto the space of sufficient statistics instead of exact coalescence 
of states. A brief illustration of this approximate coalescence is given in Figure 17. For 4 
different models with varying degrees of dependency are depicted the 6 dyadic statistics of the 
model fitted to Lazega's collaboration network as well as the # edge-wise shared partners 1 
through 14. The interpretation is that when the 3 chains have ‘ ‘merged’ ’  then we know that we 
could have started in any state in-between (used here in a loose sense) and we still would have 
produced a very similar graph. To get rid of the bias induced by the deterministic stopping rule 
(approximate coalescence) we need to run 2 independent copies of the (approximately) coupled 
chains as well as do several restarts (departures from Perfect simulation are not treated here). 
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  (c)   (d) 
Figure 17 Approximate per fect sampling of (C)ERGM: 4 realisations of approximately coupled processes 
with different parameter  values for  HH specification for  Lazega's collaboration network 
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A.IV. Fitting models to social networks with missing data 
Here we assume that we have data of the type illustrated in Figure 18, i.e. we have one or several 
dyads for which we have no information as to whether an edge is present or not. 
 

 
i 

j k 

l 

? 

 
Figure 18 Observed network with missing information for  dyad {k,l} 

 
The elements of the adjacency matrix X thus are 
 

5
�

5
�

�

�

otherwise?

actor   torelatenot  doe actor  if0

actor   torelates actor  if1

ji

ji

xij . 

 
In the following we only treat missing data models for graphs explicitly but the extension to 
directed graphs is straightforward. 
 
Previous work on missing data in SNA has primarily focused on missing edge indicators 
stemming from non-respondents. The seriousness of the issue was acknowledged by Stork and 
Richards (1992) but they only offered an ad hoc solution (for digraphs), “complementation”  of 
data, which has some obvious shortcomings. The impact of non-respondents has received some 
attention, largely concerned with the impact of missing data on various indices (Kossinets, 2006; 
Costenbader & Valente, 2003; & Huisman, 2007). Principled approaches are thus far relatively 
scarce with Robins et al. (2004) treating non-respondents as a special breed of actors and Gile 
and Handcock (2006) using the missing data principle, both of which in the ERGM framework. 

���7��� 3��
�������
	���
���
��
��
��	
���� 


Assume that we for the complete data (i.e. assuming that we have no missing information) have 
an adjacency matrix X, taking values in �. The model is assumed to be indexed by a p � 1 
vector ����� of real-valued parameters and that a model may be written with a probability 
mass function (pmf) of the form 
 

)(
1

)|( XX �
�

� q
Z

P � , (E-2) 

 
where )(X�q  is a real vector valued function of both the parameter vector and the variable X, 

and 
 

	
�

�
�U

U)(�� qZ  
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is the normalising constant that is only a function of the parameter vector �. Furthermore, for the 
exponential random graph model (ERGM) the pmf is defined as in (E-2) with 
 

))(exp()(
1	 �

�
p

k kk zq XX �� , 

 
where the zk´s are functions of the adjacency matrix and a set of fixed vertex level attributes. For 
the simplest form of missing data mechanism we assume that edge indicators are missing 
independently at random. We introduce the missing data indicators 
 

�
�
�

�
missing is  if0

observed is  if1

ij

ij

x

x
ij6 , 

 
and throughout we assume that we can factor the joint distribution of )1;( njiij 707� 66  and X 

 
)()|()|,( 6��6 PPP XX � . 

 

Initially we also assume that )Bern(~
...

86
dii

ij  for nji 7071  but this can relatively easy be 

elaborated on. A convenient yet flexible way of incorporating exogenous information 
about what edge indicators are missing is through e.g. a logistic regression on 6 . 
 
When we are not interested in studying the missing data mechanisms per se, since the 
inclusion variables 6  are observed and therefore fixed throughout the estimation process, 
we define the inference procedure conditional on 6 . Hence, given 6  we define a partition 
of data into an observed fixed part U and a latent unobserved part V. For notational 
convenience let it be understood from the context that the structure on U and V is retained 
and unambiguous. 
 
Missing data is straightforwardly handled in the Bayesian framework using the principle 
of data augmentation (Tanner and Wong, 1987). This consist of setting up a Markov chain 
Monte Carlo (MCMC) sampler that samples from the joint posterior of the missing data and the 
parameters given observed data by alternating between performing draws from 
 

(a) The fully conditional posterior of the parameters given data and a realisation of 
the missing data 
(b) The fully conditional posterior of the missing data given data and a realisation 
of the parameters 
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Given a realisation of the complete data X = (U, V), and a prior distribution )(�� , the posterior 

distribution of � given the we have observed data X, is given by 
 

)()(
1

)(

)()|(
)|( ��

���
�� �

�

X
X

X
X q

Zm

P
�� , 
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where 
 

����
�

d)()(
1

)( 
� XX q
Z

m  

 
is the marginal likelihood. In Koskinen (2006; and above) it was shown how a Metropolis-
Hastings (MH) algorithm, LISA, can be used to produce an MCMC sample N

k
k

0
)( )( ��  from the 

posterior distribution that can be used for exploring the posterior distribution. 
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Using Bayes theorem we can write the fully conditional posterior distribution of V given 
the parameters and U as 
 

),(
)|,(

)|,(
),|( UV

UV
UV

UV

V

��
�

�� q
P

P
��

	
. 

 
Now label the elements in V using the index set 9. In order to further simplify the 
MCMC we may now use the property of the Metropolis-Hastings sampler that in order to 
draw V we may draw elements iv  sequentially from their respective fully conditional 
posteriors for 9�i  
 

)|()|(

)|(
))(,|(

��
�

��
XX

X
U

i
jji PP

P
vv

i :�
�


9�
, 

 
where }:{ ijji .9��9
 , X = (U, V) and Xi:  is the matrix X in which iv  has been set to 

iv
1 . Now let the change statistic )()( XXX zz ii 
:�;  and 

 

$ % 1T )exp(1
)|(/)|(1

1
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X
XX

U i
i

jji PP
vv

i
;�

��
�� . (E-3) 

 
We may note that (E-3) is exactly the quantity we use when we use the nearest neighbour 
Metropolis-Hastings algorithm for drawing graphs according to ERGM. In other words 
the missing data algorithm can be summarised circling through the steps 

(a) draw a parameter vector from the posterior using one step of LISA and 
the complete data X = (U, V) 
(b) for each of the elements in 9�i , use (E-3) to perform a single Metropolis-
Hastings updating step 
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For the Bernoulli(�) graph the edges indicators are all identically independent Bernoulli trials, 
each with the probability of success (edge present) �. The model may hence be written 
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ynyP 

� )1()|( ���X  
 

where 	
0

�
ji

ijxy  is the density of the graph. With a conjugate Beta prior distribution for �, 

11 )1()( 

 
� ba ���� , the posterior of � given complete data X = (U, V) is hence 
),(Beta~| ybnay 
��X� . When drawing the missing edges we may note that since the edges 

are independent by assumption, the only information regarding the values of the missing edge 
indicators provided by data is that which is mediated through the parameter. More succinctly put, 
if we have a lot of edges in the observed portion of data, the draw from the full conditional 
posterior of � is likely to have produces a large value. If the value of � is large the probability 
that the missing edge indicator is a success (1) is large. The MCMC circles through the steps (a) 
through (b.K): 
 
(a) 11 )1()|( 
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where ||9�K . 
 

���7�&� ���
��������
��
���
�������
����


The principle of the missing data algorithm is illustrated in Figure 19. We have data of the kind 
in the left of the picture, where there is a dyad { k,l}  for which we have no information regarding 
the status of the corresponding edge. In principle either of two scenarios are true, either there is 
an edge between k and l, or there isn't. Each of these scenarios gives two different conditional 
posteriors, represented by the red and the blue curve respectively. The repeated draws of 
different scenarios in the MCMC assures the red and blue curve are mixed with proportions that 
are in proportion to the likelihood (actually probability) of their respective scenarios. 
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Figure 19 The pr inciple of the missing data algor ithm for  social networks 

In the course of fitting the ERGM to data we are also given probabilities for different true 
structures, in fact we are giving a whole distribution of realisations of the part of the graph that is 
missing. This distribution can be summarised by for example a graph with weighted edges - a 
weight of 1 is assigned to an edge that is certain or observed, a value close to 0 indicates a highly 
unlikely edge or and observed absence of an edge. It is however important to recall that we have 
made quite simplistic assumptions regarding the missing data mechanism and hence this 
algorithm should be used for ‘ ‘ coping’ ’  with missing data and performing inference for the 
model when faced with missing data rather than inferring the missing data intself. 
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We fit an ERGM where we model a collaboration network on a set of 36 actors (Lazega, 2001). 
We let the set of actors be represented by a set },,1{ nN ��  of vertices and let the colaboration 
network be represented by a random edge set on N with adjacency matrix X, the elements of 
which are 
 

�
�
�

�
otherwise0

actor  with escollaborat actor  if1 ji
xij . 

 
In this particular example we follow the specification in Hunter and Handcock (2005) and for the 
attributes ai (seniority of actor i in terms of rank), bi (binary indicator of role of actor i), ci (sex of 
actor i), di (office location of actor i), (for more details about the model and the data set see e.g. 
Lazega, 2001; Lazega and Pattison, 1999; and Snijders et al., in press): 
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k Effect )(Xkz  

1 Activity/popularity 	
0 ji

ijx  

2 Main effect of seniority )( ji
ji

ij aax �	
0

 

3 Main effect of practice )( ji
ji

ij bbx �	
0

 

4 Homophily practice )( ji
ji

ij bbx �	
0

1  

5 Homophily sex )( ji
ji

ij ccx �	
0

1  

6 Homophily office )( ji
ji

ij ddx �	
0

1  

Here 1 denotes the indicator function. Following Hunter and Handcock (2005) we introduce the 
geometrically weighted shared partner statistic (GWEPS) which was derived as the alternating 
triangle statistic  
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from the partial dependence assumption by Snijders et al., (in press). When 1  in the alternating 
triangle statistic is allowed to be a free parameter the model containing both GWEPS and 

1� log8 �  belongs to the curved exponential family of distributions. 

 
Now, let us pretend that observations are missing for different hypothetical scenarios for missing 
data. 
 
A: = 
B:{ 1,2} ,{ 17,26}  
C: { 1}�N \{ 1} , { 2}�N \{ 2} . 
D: { 1}�N \{ 1} , { 2}�N \{ 2} , { 3}�N \{ 3} , { 4}�N \{ 4}  
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Figure 20 Density estimates for  parameters is a model with GWEPS fitted to Lazega's (2001) New England 
Lawyers collaboration network with LISA(K = 2000, m = 7). M issing data scenar io is A for  solid line, C for  
red dotted line, D for  black dashed line 
For the dyadic parameters we should not expect much change other than the increase uncertainty 
associated with the loss of precision stemming from the reduction of the number of observations. 
On the whole the only noticeable difference is for the posterior of the shared partner parameter, 

7� , where the removal of data has increased the amount of uncertainty. 

�(vi|rest)

hist
�(vi|rest)

�(vi|u)

x1,2

x17,26

 

x28,35

 
Figure 21 Poster ior  predictive distr ibutions for  missing edge indicators 
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The posterior predictive distributions for the missing edge indicators ought to give us a general 
idea of whether the missing data mechanism and the augmentation scheme manages to plausible 
capture basic features of the data. The trace plots for the missing edge indicators in scenario B 
are give in Figure 21. Looking back to e.g. Figure 11 we know that x1,2 should be 0 and x17,26 
should be 1. Whereas the algorithm seems to pick up on the former the latter, at first, appears to 
be less convincing. When interpreting these results one has, however, to keep in mind that the 
overall density is fairly low in the data set and thus, given no other information, our best guess 
for a missing edge indicator would always be 0. Accordingly, a posterior predictive probability 
that an edge is present of around .5 is fairly strong evidence. In some instances the evidence is 
even stronger. When 10 dyads are removed at random and the missing data algorithm is run, one 
of the dyads { 28,35}  stands out as evidenced in the right hand side of Figure 21. There seems to 
be very strong evidence for the corresponding ties to be present. Looking again at Figure 21 we 
see that 28 and 35 are two senior people in the same office who are situated in a dense and 
highly triangulated and clustered part of the network. 
 
Making these remarks regarding the ability of recovering missing data we do have to keep in 
mind that this approach is primarily designed to facilitate estimation of structural properties of a 
network in the face of missing data and not designed to predict missing values. 

A.IV.6.a. Improvement on naive, available observations approach 
As illustrated in A.I.1, a subgraph of an ERGM need not necessarily be an ERGM. From a 
modelling perspective, the data augmentation scheme outlined above is to be preferred to an 
analysis that only uses the available, what way be termed the naive approach (c.p. c.f. 
‘ ‘available-case’ ’  analysis, Little and Rubin, 1987, sec. 3.3). For Markov graphs we know that 
we introduce non-Markov dependencies when information is removed. For other types of 
dependence structures the marginal dependence structures probably requires a bit more work. In 
the case of the exercises above, the difference between the principled approach and the naiv 
approach turned out to be fairly small. There are several possible explanations. One of these 
might be that when all the covariate effects are taken into account then the remaining 
interdependence between dyads is not strong enough to distort the dependence structure to such 
an extent that it is visible as a difference between the naive and the principled approach to 
missing data. Some evidence to suggest that this is indeed the case is provided in Figure 22. 
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Figure 22 Goodness of fit distr ibutions for  Lazega's collaboration network: the predictive distr ibution for  a 
dyad-independent model where distr ibution of shared par tners is conditional on MLE (a); poster ior  
predictive distr ibution for  dyad-independent distr ibution only conditional on observed data (b); poster ior  
predictive distr ibution for  full curved exponential family specification only conditional on observed data (c). 
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As is the case in general in Bayesian inference the posterior distribution is always proper 
whenever the prior distribution is proper. For the most part in this presentation however we have 
employed flat, improper prior distributions and it is important to investigate the conditions under 
which the posteriors are proper. For exponential random graphs this translates into checking that 
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Define first the convex hull of the vector of statistics }:)({ ��� XXzC  and define the relative 

interior rint(C) of C, and the relative boundary rbd(C)= cl(C)\rint(C). For the Bernoulli(�) 
random graph model it is obvious that the density of the complete graph belongs to rbd(C) and it 
is well known that the MLE does not exist when the complete graph is observed (Handcock, 
2002). With an improper prior it is easy to check that the normalising constant in the posterior 
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This suggests the following Theorem: 
When we use an improper prior and have obsX  from an ERGM, )(rbd)( Cz obs �X  imply that the 

posterior is improper. 
 
For a proof see Theorem 1 in Diaconis and Ylvisaker (1979) from which we see that the above 
theorem may in fact be strengthened. 

A.IV.7.a. Existence for  network data with missing information 
When the adjacency matrix is completely observed we may in principle ascertain whether 

)(rbd)( Cz obs �X  or not (though it may be difficult in practice). Given the previous partition of 

data X = (U, V) but assuming that we only have completely missing vertices so that we may 
speak of the subgraph induced by the observed vertices that has an adjacency matrix UU �� , 

denote by UC  the convex hull on the sufficient statistics of graphs in U�  and by 

}:)({ ��� XXzC . 
 
We put forth the conjecture that the marginal posterior of �  is improper if a vague prior is used 
and )(rbd)( UU Cz � . 

 
An interesting question is whether )(rbd)( Cz obs �X  even if )(rint)( UU Cz � . 

A.V. Using a logistic link function to model the missing data 
mechanism 

As mentioned in the previous approach, as long as the inclusion variables of the dyads are 
assumed independent the incorporation of more sophisticated missing data mechanisms does not 
alter the analysis of the network at all. Inferring determinants of missingness may be interesting 
in its own right though. 
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A.VI . Network dependent missingness 
A possible extension is to allow for dependence within dyads when we have directed networks. 
Should we include even more elaborate interdependence assumptions the analysis quickly 
become complicated. It would be worthwhile pursuing the possibilities for have, at first, a 
limited dependence on the edge-indicators leading to probability structures such as 
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Tentatively we may write a conditional model as 
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where ijyT?  is a linear combination of exogenous attributes of the dyad. When drawing the 

missing edge-indicators according to (E-3) conditional on everything else, we would have 
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Hence, if i8  is negative the fact that i!  is missing ( 0�i6 ) contributes negatively to the 

probability that the tie is present. 
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Whereas approach A only assumes that we have data in the standard adjacency matrix form, 
possibly with some entries in the adjacency matrix missing, the approach B takes a principled 
view on the entire data analysis process. This means, in principle, that we set out policy for how 
the data gathering process be integrated in the statistical mechanism to produce clearly 
interpretable results than lend themselves to re-evaluation of the process. More explicitly our 
goal should be to set up rules for data gathering and data format that retains as much information 
as possible about the data generating process. This is to tailor the data to a specific statistical 
model for data. Important is also to enable and incorporate the possibility of making subjective 
judgements explicit. Under the Bayesian paradigm no conclusions can ever be drawn from data 
analysed by a model that does not explicate and quantify subjective information. If the subjective 
judgements are not retained at each stage of the analysis process we are unable to parse out what 
data tells us and what is prior knowledge and thus limiting our ability to learn from data. 
 
The scope of this approach is quite ambitious and a full implementation is far away in the future. 
Apart from recommending aims and goals for the data gathering process, we may develop some 
minor aspects of this approach. One such approach is the partial cognitive social structures 
(PCSS) approach. The PCSS data collecting paradigm assumes that we have multiple sources of 
information on one and the same relation for a set of actors. In the original cognitive social 
structures approach (CSS)(Krackhardt, 1987), it was assumed that each member of a set of actors 
gave their version of the entire network, resulting in as many adjacency matrices as there where 
actors. These different versions of the network could then be used to asses different actors 
accuracy in judging who interacted with whom or to ‘ ‘estimate’ ’  the commonly agreed on 
network structure (by some criteria). The fact that this approach to CSS was completely ad-hoc 
made impossible statistical inference and an informed, principled analysis of actor accuracy and 
the true underlying structure of interaction. A Bayesian approach for analysing CSS was 
proposed in Koskinen, 2001, 2002 and 2004b, and it was argued that the nature of data was such 
that one could only really perform inference using a Bayesian methodology. There is a growing 
body of research on similar Bayesian approaches to CSS-like data (see Dombroski and Carley, 
2002; Dombroski, Fischbeck, and Carley, 2003; Butts, 2003; Karabatsos and Batchelder, 2003). 
 
The idea in approach B that is of highest priority is to develop a simple model for pooling 
information sources that builds on the extension of the Bayesian CSS given in Koskinen, Jansson 
and Spreen (2002). In an analogously fashion to Koskinen, Jansson and Spreen (2002), PCSS 
requires that we have multiple reports on one underlying (but unobserved) relation on a set of 
actors but in contrast to the traditional CSS, we do not require all the reports to cover the whole 
set of actors. Hence, PCSS may be considered as CSS with partially missing data. In the early 
version of developing this model we focus on the reporting mechanism of the reports (or sources 
of information). In order to do this we introduce two so called detection mechanisms that are 
specific to the perceiver (reporter, rater, or equivalently defined source). These are @, that relates 
to accurate detection of an interactional tie, and ?, that represents the propensity or probability of 
false detection of an interactional tie. To capture that some actors in the network may be more 
difficult to monitor of less visible, two actor specific parameters are introduced. These are 
collectively called ‘ ‘visibility parameters’ ’  and individually they are A and B. The former, A, is 
called the accurate visibility parameter and represents the probability that interaction involving 
this actor is seen and detected by a generalised perceiver. The latter, B, is the false visibility 
parameter of an actor. Because an actor with a high visibility parameter is likely to be seen as 
having relations to others when in fact this actor does not, an alternative name for B is the 
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‘ ‘celebrity parameter’ ’ , something which immediately suggest the alternative name the ‘ ‘ talent’ ’  
parameter for A. 
 
In a full model @, ?, A, and B are all assumed to be individual, that is, specific to each perceiver 
and perceive. To reduce the number of parameters and in order to make the model m ore 
parsimonious we need to impose various homogeneity restrictions on these parameters, assuming 
e.g. that groups of say actors have the same level of visibility. The success of the model depends 
in part on how well we are able to handle the nature of the unobserved latent network that we are 
interested in. We suggest that the most fruit-full approach is to treat the unobserved network as 
an unobserved latent variable. The aim is the to include in the posterior analysis the posterior 
predictive distribution for the latent network. Hence, instead of giving one point estimate for the 
true unobserved structure we propose (as in e.g. Koskinen, 2002) that the analyst may explore 
the entire distribution of networks that is implied by the model and the reports that we have 
observed. If we for example we are interested in knowing how many steps separates actors A and 
B in the true network given the reports that we have, we may calculate the posterior probability 
that there are 1 step, 2 steps, 3 steps, and so on. This could for example inform us of the risk that 
A is able to pass a parcel to B through the ties in the network. At this stage we do however 
suspect that the model used for the unobserved structure in the inference procedures in previous 
approaches (Koskinen, 2001, 2002 and 2004b; Koskinen, Jansson and Spreen, 2002) is far to 
simplistic and that the analysis would benefit from incorporating a more sophisticated network 
model such as the ERGM. This suggests that the work on LISA takes priority. 

B.I . The pr incipal data structure 
We assume that there is a true network representing some generic form of interaction amongst 
actors in a set N= { 1,...,n} . We assume this set of actors to be specified exogenous to any 
modelling assumption we make and that the set is considered fixed. The true network is 
represented by the adjacency matrix Z, which by assumption is unobserved. What we observe is 
a collection of reports },,1{ Ii ����  on the unobserved Z. In the classic cognitive social 
structures approach (CSS) of Krackhardt (1987) Z is the adjacency matrix of a directed graph 
and each report i produces a report ijkX  on the entire network with elements 
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In the partial cognitive social networks (PCSS) setup we allow reporters to report on different 
subsets of the dyads so that )),(:( )2(NMkjx iijki ���X . Hence if || ii Mm � , we have 
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observations as opposed to the )1()1( 2 
�
 nnnIn  observations for the traditional CSS setup. 
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Figure 23 The data structure of PCSS.  
 
In Figure 23 we illustrate the data principle of PCSS. Note that we do not propose to simply 
aggregate the reports to create a true graph with elements )(min ijkijk xz ���  since we take 

inconsistencies in the reports to mean something substantial. We might for example ascribe great 
significance to the fact that in Figure 23, reporter 1 has reported { l,k}  as absent whereas reporter 
2 has reported it as present. Note also the reference that is made here to the distinction between a 
tie reported as absent 0�ijkx  by i and the tie not reported on at all by i, iMkj C},{ . This is a 

crucial observation (admittedly not fully acknowledged in Koskinen, Janson and Spreen, 2002) 
as we do very rarely have explicit reports on null-dyads - typically actors are asked to name their 
alters, reports are made on what pairs of actors interact, etc. 
 
Butts (2007) proposes an extension to the CSS approach in Butts (2003) that explicitly models 
the reporting mechanism using a kind of biased nets. This approach could prove extremely useful 
in dealing with the potentially systematic errors introduce by viewing the iM 's as fixed and 
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exogenous. As shall become clear from the descriptions below, the CSS approach in Butts 
(2003) is likely to be a little too simplistic to adequately represent the PCSS. 
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In line with Batchelder et al. (1997), we introduce the probabilities 
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and 
 

)1|1Pr( ��� jkijkijk ZXF . 

 
These are generally referred to as hit and false alarm probabilities respectively. In a first model 

we make the assumption that for the reports iX  is independent of uX  for all ((
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conditional on Z, and their elements are independent and satisfy 
 

)|Pr()|Pr( jkjkijkijkijkijk zZxXxX ���� Z . 

 
If each element of Z is considered a parameter to be estimated, a saturated model with distinct 
hit and false alarm parameters for each triple � ��

��
u uMukji }{),,( , would mean 

)1(2 
� nnm  parameters. Considering that we have only m  observations we need a way of 
reducing the number of parameters. A convenient way of doing this is to introduce homogeneity 
restrictions on the hit and false alarm parameters. One of the simplest forms of homogeneity 
restrictions is to assume that the accurate or false report only relates to who the informant is 
 

iijkH @�  and iijkF ?�  for all ��i . 

 
For this model the likelihood function would be 
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which is basically the likelihood for a collection of independent Bernoulli trials. 

B.I .1.a. Poster ior  distr ibutions of detection parameters 
With a likelihood of the form (E-4), obtaining the posterior distributions for the edge indicators 
and the detection parameters is straightforward. Because of the large cardinality of the space of 
Z, � , we cannot however obtain the posterior distribution in an analytically tractable form. 

Assume that let Z and the detection parameters be independent a priori with product prior 
),()( ?@�� Z , giving a joint posterior distribution 

 
),()())(;,,())(|,,( ?@��?@?@� ZXZXZ �� �� � iiii L . 
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Assuming independent Beta(
ii

ba @@ , ) and Beta(
ii

ba ?? , ) priors for the detection parameters, the 

fully conditional posterior of i@  given the rest is Beta(
ii

ba @@ , ), where 
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Similarly for i?  given the rest the posterior is Beta(
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Hence for a given realisation of Z we may easily draw detection parameters from the posterior 
distribution or calculate moments for the detection parameters. The problem is that Z is 
unobserved and has to be inferred somehow. 

B.I .1.b. Poster ior  distr ibutions of latent network - Bernoulli graph 
Consider using as a prior distribution for Z a Bernoulli(p) random graph model. Investigating the 
likelihood function (E-4) we see that the fully conditional posterior of Z given everything else is 
 

)())(;,,())(,,|( ZXZXZ �?@?@� �� �� � iiii L

)1(

),(

)1)(1()1(

),(

)1(

)2(

)1()1()1(
jkjkijkjkijkjk

i

ijkjkijkjk
z

Nkj

zxz

i

xz

i
i Mkj

xz

i

xz

i pp



�






� �


 "" " 
(
(
)

*
+
+
,

-


� ??@@

�

. 

 
This may be further simplified so that we recognise this to be the pmf of a Bernoulli graph with 
inhomogeneous arc probabilities jkp  
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where )),(:(),( ikj Mkji ��� �� . 

 

B.I .1.c. Gibbs sampler  
Based on these fully conditional posteriors we may set up a Gibbs sampler that in each iteration 
circles through the following updating steps: 

(a) For each )2(),( Nkj �  draw  

 

)(Bernoulli~,)(,,| ),( jkkjiijk pZ 
� ZX �?@ , 

 

where jkp  is calculated according to (E-5). 
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(b) Conditional on the drawn Z, for each ��i  draw 

),(Beta~,)(,,|
ii

baiiii @@?@@ ZX ��
  

 

(c) Conditional on the drawn Z, for each ��i  draw 

 

),(Beta~,)(,,|
ii

baiiii ???@? ZX ��
  

 

The resulting sequence G
h

ggg
1

)()()( ),,( �Z?@  thus produced will be an approximate sample from the 

joint posterior distribution of the detection parameters and unobserved arcs given the reports. 

B.I .1.d. Use of pr ior  distr ibutions 
The hyper parameter p for Z, is used as a tool for us to adding prior information regarding our 
belief in the density of the latent network. It is a very blunt tool and has to be used with some 
caution. The effect of using different values of p is seen in (E-5) where it enters multiplicatively 
in the second term of the denominator as (1 - p)/p. Note that (1 - p)/p = 1 for p = .5, i.e. with a 
uniform distribution on all digraphs a prior there is ‘ ‘no’ ’  contribution of the prior distribution to 
the posterior distribution. 
 
The prior distributions for the detection parameters are meant to capture our prior belief 
regarding the accuracy of the different reporters (records, sources or whatever is considered a 
report). The Beta distributions are fairly easy to understand since the support is bounded and the 
shape of the distributions allocate probability mass to different sub-intervals in the interval (0,1). 
It is tempting to use the ‘ ‘vague’ ’  prior distribution for the detection paramters, i.e. Beta(1,1), 
which is equivalent to the rectangular distribution on the unit interval. There is a danger in doing 
this however since the model is not fully identified. 

B.I .1.e. Identifiability 
The model with likelihood function (E-4) is not fully identified since 
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where cZ  is the adjacency matrix of the complement graph to that for which Z is the adjacency 
matrix, ?@ �* , and @? �* . Hence with uniform priors everywhere the posterior distribution is 
multimodal in the sense that each point in the parameter space has a complementary point, that in 
a sense has the opposite interpretation, with the same posterior probability (really, the same 
value of the posterior ordinate). What is needed to achieve identification and near identification 
is discussed in Koskinen (2004b). As reported there it is far from a trivial problem and it is also 
argued against using restrictions on the parameter space. For our purposes it seems most 
appropriate to adopt a fully subjective Bayesian analysis and employing meaningful proper prior 
distributions. Naturally, a fully subjective Bayesian analysis ought to be checked for sensitivity 
to prior specifications. 

B.I .1.f. Improving the pr ior  for  the unobserved network 
Since the Bernoulli graph model seldom is a useful model for real social network data (c.f. 
Robins, et al., 2006) we would do well to have a more realistic prior distribution for the latent 
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network that gives us more freedom in defining likely latent structures. There are many 
candidates for improving on the Bernoulli graph model but instead of listing different options we 
propose to use an exponential random graph model (Frank and Strauss, 1986; Pattison & 
Wasserman, 1999; Robins, Pattison, and Wasserman, 1999; Wasserman & Pattison, 1996; 
Wasserman and Robins, 2005, Snijders et al., in press; Hunter and Handcock, 2006) since many 
of the models proposed in the literature are special cases of this model (for example the 
Bernoulli graph model). To recap the exponential random graph model (ERGM), we define the 
pmf for Z a priori to be 
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where T

1 ),,( p��� ��  is a vector of real-valued hyper parameters, the uk´s are functions of the 

adjacency matrix and a set of fixed vertex level attributes, and )(�D  is a normalising constant 
that is only a function of the hyper parameters. 
 
The Gibbs sampler updating steps for the detection parameters remain the same as before since 
the prior )(Z�  cancel in the full conditional posterior distributions for these. Since the ERGM 
allows for dependencies between arcs the updating step for Z differs from the previously 
presented Gibbs sampler however. To begin with the interdependencies mean that we have to 
draw the entire Z in one step. For most ERGMs performing draws cannot be made directly but 
requires an MCMC approach. If, say, a Metropolis-Hastings step is used to update Z, the 
algorithm is not strictly speaking a Gibbs sampler anymore (it is important to keep in mind 
however that the Gibbs sampler is a special case of the Metropolis-Hastings algorithm). 
 
To write up the fully conditional posterior of Z given the rest we begin by inspecting the 
posterior as given by Bayes theorem 
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By taking the logarithm of the likelihood function and rearanging we see that we may write the 
full conditional posterior as an ERGM  
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In order to get this expression in a more convenient form we write 	 �
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�� , and we may put the fully conditional posterior in the 

familiar form 
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The updating step (a) in the Gibbs sampler can now be replaced by a Metropolis-Hastings 
updating step. Given the current adjacency matrix Z, we propose a move to Z*  which has a 
randomly chosen element (j*,k*) set to its opposite, jkkj zz 
�1*

, . This move is accepted with 

probability min{ 1,H} , for 
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B.I .1.g. Drawbacks of ERGM pr ior  
Fixing the parameters in an ERGM prior, in other words fixing the hyper parameters, may prove 
both hard and overly restrictive. Hard because it may be hard to know a priori what type of data 
a specific model produces. Overly restrictive because the chosen model may place very little 
probability mass on graphs in the likely region of data. There is no obvious way of scaling the 
ERGM to diffuse the pmf while still retaining the ‘ ‘ location’ ’  as is possible in location-scale 
models. Even if we do have good prior information, say parameters estimated from similar data, 
incorporating this information through hyper parameters for Z may not be the best strategy. 
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An approach to PCSS that is subtly different from the one outlined above is to treat Z not as a 
parameter to be estimate but rather a latent unobserved variable. This reduces the number of 
parameters as well as being more flexible. The procedure (like that with ERGM prior) produces 
a distribution of graphs but also a distribution for the structural parameters. We may point out 
that this is better that using a point estimate (of Z) since a point estimate does not include the 
uncertainty in data collection - examples of measures to calculate from the distribution of graphs 
is connectivity; the probability that A is able to send a package to B through his network using at 
most k steps; etc.. The posterior distribution for the ERGM parameters allow for further and 
future use of this inference in analyses of social network data in accordance with the sequential 
nature of Bayesian inference 
 
To implement this addition to the PCSS we may keep to the details above for updating Z, @ , 
and ?  with only one extra additional step. Let )(��  denote the prior distribution for the 
parameters in the model for the latent variable Z. Since Z, X, @ , and ?  are all fixed in the 
updating step for �  we can easily see that updating �  may be done as in the case of inference 
for a regular ERGM. Hence we can perform the updating step for �  using one LISA updating 
step. 
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Introducing visibility parameters in the inference scheme outline above is straightforward if 
these are introduced multiplicatively: 
 

kjiijkH AA@�  and kjiijkF BB?�  for all ��i  and Nkj �, . 

 
The MCMC inference scheme basically remains the same with some minor differences. 

!���#� 
�
���%��
����
������
��
���
�)''

When we start relaxing the homogeneity assumptions one by one, we eventually run out of free 
parameters. In addition interpretation of the results become more cumbersome as the number of 
parameters increase, especially seeing as we need to assign prior distributions to all the detection 
and visibility parameters. A way forward is modelling the probabilities using probit link 
functions as in Koskinen, Jansson and Spreen (2002). 
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Dealing with network data where vertices, possibly an unknown number, are missing presents us 
with a host of interrelated problems of both a conceptual nature as well as technical. Although 
we may sometimes think that we have a well-defined notion of what constitutes a network, 
typically our intuition is based on an ill-founded vague notion of social interaction. We tend to 
confuse the units of measurement with what is actually measured. Naturally some definitions of 
what constitutes a network are more susceptible to falling pray to this fallacy than others. Say for 
example that we subscribe to the hypothesis of six degrees of separation for a relation such as 
that defined in Milgram (1967), in which case it would be nonsensical to speak of estimating the 
size of the network. Rudimentary statistical methods are available for the case when the 
underlying population is well defined. These methods typically rely on very simplistic 
assumptions regarding social interaction but the simplicity of these models may also promote 
their use in preliminary analyses, in which case we - because of the high degree of uncertainty - 
recommend using the Bayesian approach to fitting the model of Frank and Snijders (1994) 
presented in Tallberg (2004). 
 
We think that in the context of dealing with missing vertices one need to consider the subtle 
issues underlying social network theory more thoroughly. Kossinets (2003) touch on some of the 
issues surrounding missing vertices, there are however much more fundamental ontological and 
epistemological questions that have to be developed and explored. One of these questions is 
generally know by the name of the boundary specification problem (Laumann et al 1983; White, 
1992). Another issue is that of scaling and how to large networks relate to smaller networks 
(Anderson, Butts, and Carley, 1999; Robins, Woolcock, & Pattison, 2005). 
 
The source of the most frequent discrepancies between actually collected data and the data of the 
ideal research setup must arguably be the way inclusion of vertices depend on their ties to other 
actors. When trying to analyse social network data from a statistical point of view the fact that 
the inclusion probability of the units of analysis (the dyads, triads, etc) are dependent of the 
values of the same make things complicated. However, it makes intuitive sense to sample the 
network using a link tracing mechanism or a snowball sampling scheme. This ties into the 
problem of missing vertices since one may argue that a plausible missing vertex mechanism is 
that of stopped sampling. In combination with tool for handling edge likelihood assessment, a 
statistical model that handles snowball sampled data could prove very useful for dealing with 
this type of missing data mechanism. Thus far however, there only seems to exist one approach 
that has the potential for modelling snowball sampled data in a non-trivial way and that is work 
in progress by Pattison (2007). This approach holds a lot of promise but tailoring it to our needs 
may be far off into the future. 
 
If we have reason to believe that there is only a small but unknown number of missing vertices 
an extension of the approach in A may be applicable. This consists of transforming the missing 
node problem into a set of ERGMs with missing dyads where each conditional model is 
conditional on a fixed number of missing vertices. In practice we do a series of estimations 
where we start by assuming that there are no missing vertices. We the proceed to introduce one 
‘ ‘ imaginary’ ’  ghost vertex an do estimation in the manner detailed in approach A. We then 
continue to introduce successively more ghost vertices. The goal is to produce posterior 
predictive distributions on the edges or arcs that pertain to the missing vertices for each scenario 
separately. If there is some structure on the network the posterior predictive distributions will 
inform us as to where the missing vertices are in the structure of the network effectively 
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informing us of where (in the network) to look for further actors. A potential source of problems 
is the homogeneity assumption of the ERGM and unless we include actor attributes and other 
exogenous sources of information there is a risk that (observed) actors are likely to be related to 
the missing vertices in proportion to their activity. At a higher order of interdependency, this 
would be expressed by mirror-scenarios by which we mean that certain structures relating to the 
missing actor may be invariant under partially homeomorphic transformations. Naturally we do 
not have any covariates for the ghost vertices and hence we also have a problem of missing 
covariates that has to be dealt with using approach E. 
 
The next step is to develop a scheme for obtaining a posterior distribution on the number of 
missing vertices. This problem is equivalent to a model selection problem. To obtain the 
posterior we hence need proper prior distributions for the model parameters, the determination of 
which is a delicate problem already in the case of an ERGM without missing data. Here it is 
rendered even more difficult since we want to compare models defined for networks of different 
sizes (again see networks Anderson, Butts, and Carley, 1999; Robins, Woolcock, & Pattison, 
2005). Some of these problems can be alleviated by reporting result for different prior 
distributions in order to get a handle on how the posterior is influenced by the prior distribution. 
There is also the additional technical problem of how to calculate the so called marginal 
likelihood that is needed for Bayesian model selection. A procedure that works for the ERGM 
for an approximate MCMC algorithm was presented in Koskinen (2004a) but it is yet to be 
determined how this can be modified to work in the LISA algorithm and in the presence of 
missing data. There are several interesting aspects that may be studied in this framework such as 
how scaling works; whether increasing the number of ghost vertices improves fit enough to 
offset the increase in complexity; etc. 
 
Fitting the ERGMs sequentially, conditional on the number of vertices can in theory be done 
using conditional inference (relatively straightforward once A solved). For similar types of 
problems in other areas of statistics, one usually prefers to fit the model and the model 
dimensionality simultaneously. The inference procedure would then answer several questions at 
the same time by producing a joint posterior for the parameters and the number of vertices. 
Technically though, it seems very hard to implement a joint analysis because of (yet again) 
scaling issues. 
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Figure 24 I llustration of sequential fitting of ERGMs to networks with ghost ver tices. 
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Sometimes when using different data collecting schemes for different relations we may end up 
with ambiguously defined vertices. As an example we may collect interaction data from 
exchanges of emails where we only know the identities of the senders and receivers up to their 
aliases or email addresses. In each network considered separately, there may be confusion as 
what unique individuals map to what email addresses and if there are individuals with multiple 
email addresses the size of the network is undefined. When the networks are considered jointly 
there is the additional problem of non-overlapping email addresses as addresses that are not in 
the intersection of address-sets may be pertain to either unique individuals as well as individuals 
that are in the intersect of (true) vertex sets. 
 
We propose a solution for the case when we wish to fit a multivariate ERGM to two (or more) 
relations on a set of vertices where small proportion of the vertices may be doppelgangers 
(triplegangers, and so on). The solution is primarily of a technical nature and as in the case of 
approach A it relies on simulating missing data in the course of estimating parameters. If we 
denote by ‘ ‘ id’ ’  the identities of vertices as these are presented in the data and denote by ‘ ‘ true 
vertices’ ’  the true but unknown set of unique vertices, an observed network with doppelgangers 
maps to several different graphs depending on what ids are joined together to true vertices and 
what ids are considered unique, separate vertices. In the course of implementing the LISA 
algorithm vertices die or are born in each iteration so that the size of the network fluctuates 
during the estimation process. This has the interpretation that inferences are made for all possible 
mappings of ids onto true vertices and that these inferences are weighted together to create a 
cumulative inference that is unconditional on any specific mapping. The proportions used in this 
weighting, the weights as it were, are given automatically in the course of running the algorithm 
through standard probability calculus. 
 
Since the fitting of the MERGM to data with doppelgangers involves (probabilistically) 
comparing networks of different sizes (see A on scaling up and different size networks) there are 
possibly several implementation issues that need to be tackled in order to make the inference 
procedure practically feasible. It is conceivable that one in certain circumstances need to invoke 
a degree of the notion of structural equivalence for ids in different vertex sets for two different 
relation in order to make use of data. By this we refer to cases when we may have reason to 
believe that the structural position of ids in the network is a source of information as to the true 
identity of the id - if two ids have ties to almost the same set of others we may suspect that these 
two ids belong to the same true vertex. This line of thinking applied across networks may require 
that we assign high prior probability to multiple ties (in the sense that u relates to v on relation 1 
implies that u relates to v on relation 2). 
 
As in approach C there are many conceptual issues to be resolved and investigated. There may 
also be a scope for looking into the literature on matching using relative automorphism. 



 62 

 
 

"� �����������
��
�	��
Although treated here as a separate issue, the issue of missing covariates when doing social 
network analysis is likely to be an integral part of any missing data scheme. It is for example 
hard to imagine cases where all covariates are known for all non-respondents. Nevertheless, 
since attributes and covariates are known to improve model fit for most social network problems 
(see e.g. McPherson, Smith-Lovin, and Cook, 2001, on the importance of homophily; see 
Robins, 1998, and Robins and Pattison, 2005,for details of how attributes are incorporated into 
ERGMs) detailing the treatment of missing covariates is essential for effective modelling. The 
principal difference from the treatment of missing data for interaction is that there are no obvious 
models for what is missing. For approach A for example, observed data informs us about missing 
data through the model for data. Since covariates are typically considered fixed there is no 
covariate model in the standard case. We propose to use a version of the general location model 
(Olkin & Tate,1961; Krzanowski, 1980; see also Cho et al, 2001) to allow for both continuous 
and categorical missing covariates. 
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Routine L ISAforMissingDyads 
This routine produces a sequence (�(t), V(t)) from the posterior distribution given U. Here model 
specification, number of parameters, covariates, etc., are suppressed. Note that in implementation 
a lot of efficiency may be gained from tailoring the algorithm to the model considered. As an 
example a lot of efficiency can be gained in ERGMs from the fact that )(/* )( XqXq ��

 may be 

written in terms of the change statistics. 
 
LI SAf or Mi ssi ngDyads( X)  
 
I ni t i al i ze( X)  
 
Ol dSt at e: =X 
 
f or  t : =1 t o Number Of Sampl es {  

out put  Met r opol i sHast i ngsUpdat i ngSt ep( )  
 
f or  j : =1 t o Number Of El ement sOf V {  

out put  Gi bbsUpdat i ngSt ep( )  
Ol dSt at e: =NewSt at e( X, Vt , j )  

}  
}  
 
 
I ni t i al i ze( X)  
V: =<ar bi t r ar y st at e> 
�0: =MPLE( U, V)  
H: =- Hessi an( U, V, �0)  

Pr oposal Var i ance: =
p

c

�2
H- 1 

N: =Number Of Act or s( X)  
/ * I t  i s  usual l y ef f i c i ent  t o set  �0 t o t he MLE and H t o t he I nf or mat i on Mat r i x 
usi ng i mpor t ance sampl i ng or  Robi ns- Monr o wi t h t he MPLE as st ar t i ng val ue* /  
/ * How t o set  Number Of I t er at i ons,  K,  m,  bur ni n,  and c depends on among ot her  t hi ngs 
s i ze of  gr aph* /  
r et ur n Number Of I t er at i ons, K, m, bur ni n, �0, V, N, Pr oposal Var i ance 
 
 
Met r opol i sHast i ngsUpdat i ngSt ep( )  
X: =Ol dSt at e 
�* : =Mul t i var i at eNor mal ( �t - 1, Pr oposal Var i ance) / * What  pr oposal  di st r i but i on i s sui t abl e 
i s case speci f i c  but  f or  e. g.  ERGMs t hi s mul t i var i at e nor mal  pr oposal  i s  a conveni ent  
choi ce* /  
1( �* , �0) : =LogLI S( �* , �0, K, m, Ol dSt at e, bur ni n)  
u: =Uni f or m 
i f  l og( u) < ),()* ,()(/)(log 010* 1

��1��1�� 

�

 tt

qq XX  {  

�t : =�*  
}  
el se {  

�t : =�t - 1 
}  
r et ur n �t  
 
 
Uni f or m( A)  
/ * Gener at e a var i at e f r om t he uni f or m di st r i but i on on t he set  A;  I f  no ar gument  
suppl i ed gener at e a var i at e f r om t he r ect angul ar  di st r i but i on on t he uni t  i nt er val * /  
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Gi bbsUpdat i ngSt ep( )  
X: =Ol dSt at e 
X* : =NewSt at e( X, 1- Vt - 1, j )  
 

Pr obabi l i t y : = $ % 1* )(/)(1 
� XX
tt

qq ��
 

u: =Ber noul l i ( Pr obabi l i t y)  
Vt , j : = Vt - 1, j  +u( 1- 2 Vt - 1, j )  
r et ur n Vt , j  
 
 
NewSt at e( X, Xe)  
X* =X 
/ * Ar gument s symbol i cal  shor t hand f or :  set  el ement  e i n X*  equal  t o Xe * /  
/ * When net wor k undi r ect ed e r epr esent s a dyad* /  
r et ur n X*  
 
 
LogLI S( �* , �0, K, m, Ol dSt at e, bur ni n)  
f or  i : =1 t o bur ni n {  

Ol dSt at e: =Met r opol i sHast i ngsUpdat i ngSt epGr aph( �* , Ol dSt at e)  
}  
f or  j : =1 t o m {  

�( j ) : = �* [ 1- ( j - 1) / ( m- 1) ] +�0( j - 1) / ( m- 1) / * � i s  a smot h mappi ng br i dgi ng �*  
and �0* /  

}  
f or  j : =1 t o m {  

j! := Uni f or m( [ K] ) / * [ K] ={ 1, . . . , K} * /  

)( j

j
!Y : =Ol dSt at e 

f or  k: = 1�j!  t o K {  

)(k
jY : =Met r opol i sHast i ngsUpdat i ngSt epGr aph( �( j ) , )1( 
k

jY )  

kjjw ,1, � = )()()( )(
)(

)(
)1(

)(
)(

k
jj

k
jj

k
jj qqq YYY ��� � / * NB when l og[ q�( X) ] = 

�' z( X) ;  wj , j +1, k = exp[ 1/ 2( �( j +1) -  �( j ) ) ' z( Y) ] * /  
i f  j >1 

kjjw ,1, 
 = )()()( )(
)(

)(
)1(

)(
)(

k
jj

k
jj

k
jj qqq YYY ��� 
  

}  
f or  k: = 1
j!  t o 1 {  

)(k
jY : =Met r opol i sHast i ngsUpdat i ngSt epGr aph( �( j ) , )1( �k

jY )  

kjjw ,1, � = )()()( )(
)(

)(
)1(

)(
)(

k
jj

k
jj

k
jj qqq YYY ��� �  

i f  j >1 

kjjw ,1, 
 = )()()( )(
)(

)(
)1(

)(
)(

k
jj

k
jj

k
jj qqq YYY ��� 
  

}  
i f  j  < m {  

j : =RandomWi t hPr obabi l i t i es( K
kkjjw 1,1, )( �� /E kjjw ,1, � )  

Ol dSt at e: = )( j

j
 Y  

}  
}  

1( �* , �0) : = 	 		 	 


� � �




� � � 

1

1 1 ,,1

1

1 1 ,1, loglog
m

j

K

k kjj

m

j

K

k kjj ww  

r et ur n 1( �* , �0)  
 
 
Met r opol i sHast i ngsUpdat i ngSt epGr aph( �, Ol dSt at e)  
X: =Ol dSt at e 
El ement : =Uni f or m( NCk( N, 2) ) / * When net wor k di r ect ed t he set  i s N( 2)  i nst ead* /  
X* : =NewSt at e( Ol dSt at e, 1- XEl ement )  
u: =Uni f or m 
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i f  l og( u) < )(/*)(log XX �� qq  {  

Ol dSt at e: =X*  
}  
r et ur n Ol dSt at e 
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